- IAPPING AN OBJECT-ORIENTED REQUIREMEN'I(; 3

ANALYSIS TO A DESIGN ARCHITECTURE THAT?%
SUPPORTS DESIGN AND COMPONENT REUSE . .

THESIS

Kelly L. Spicer
Captain, USAF

AFIT/GCS/ENG/90D-13

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

IR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

91 1 3 166

_

AFIT/GCS/ENG/90D-13

MAPPING AN OBJECT-ORIENTED REQUIREMENTS
ANALYSIS TO A DESIGN ARCHITECTURE THAT
SUPPORTS DESIGN AND COMPONENT REUSE

THESIS

Kelly L. Spicer
Captain, USAF

AFIT/GCS/ENG/90D-13

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90D-13

MAPPING AN OBJECT-ORIENTED REQUIREMENTS
ANALYSIS TO A DESIGN
ARCHITECTURE THAT SUPPORTS DESIGN AND
COMPONENT REUSE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Accesicn For

Air University | e)
) NTIS CRAA
In Partial Fulfillment of the Ciis Tai
. (SR BN |
Requirements for the Degree of St e
Master of Science in Computer Science _; CTTT T
\\j’

Kelly L. Spicer, B.S., B.S. LA E
Captain, USAF Dt | [T

i

)
-
[S S N

December, 1990

Approved for public release; distribution unlimited

Acknowledgments

This thesis would not have been possible without the patience, sacrifice, and

encouragement of my wife, Sally Jo. My deepest thanks go to her.

I also thank my God for giving me time off from his work to work on this

thesis.

Important thanks also goes to the AFIT facility; especially my thesis advisor,
Maj David Umphress for his guidance during my research; and my committee mem-
bers, Maj James Howatt and Maj Patricia Lawlis for their helpful suggestions and

critiques.

Important thanks also go to my mother, Laura Spicer, who took the time to

make editorial comments and suggestions.

I also thank the Air Force Office of Scientific Research for sponsoring this

thesis.

Finally, thanks go to my classmate Paul Hardy. His friendship and encourage-

ment were invaluable to me during our thesis research time.

Kelly L. Spicer

Table of Contents

Acknowledgments L.

Table of Contents o e e

Listof Figures e

List of Tables e e

Abstract

...................................

1. Introduction

1.1 Background-Problems with Current Reuse Approaches
1.1.1 Too Much Emphasis On Reuse in the Small. .
1.1.2 Current Methods Do Not Support Reuse. . . .
1.2 Problem Definition
1.3 Scope

1.4 Approach and Overview

1.5 Maximum Expected Gain
1.6 Sequence of Presentation
IL. Literature Survey

2.1 Introduction
2.2 Definition of a Reusable Architecture
2.3 Characteristics and Benefits of Reusable Architectures
24 Domain Analysis

2.5 Categories of Architecture Structures

i

Page
ii

i

x11

X111

1-1

1-1
1-2
1-3
1-4
1-4
1-4
1-5

2-1
2-1

2-2
2-3
2-5

2.6 Survey of Existing Reusable Architectures
2.6.1 SEI’s “Structural Model” Solutions Overview.
2.6.2 SLI's OOD-Paradigm for Flight Simulators.
2.6.3 Granite Sentry Command and Control System.
264 RAPID.
2.6.5 University of Texas DBMS.
2.6.6 Kiem’s Keystone Methodology.

2.7 Characteristics Needed to Support Component Reuse .
2.71 Object Oriented.
2.7.2 Explicitly Defined Purpose/Function.
2.7.3 Independent Objects.
2.7.4 Layered Architecture.
2.7.5 Standard Interfaces.

2.8 Object-Oriented Requirements Analysis.

29 Conclusion Lo

III. A Method of Mapping from an OORA to a Design That Supports

3.1 Introduction
3.2 Overview of the Products of March’s Analysis Method
3.2.1 Step-One Products.
3.2.2 Step-Two Products.
3.3 Description of the OOD-Paradigm Architecture
3.3.1 Structure Overview.
3.3.2 The System Abstraction.
3.3.3 Templates For Recreating Architecture Parts.
3.4 Summary of Advantages and Characteristics of the OOD-

Paradigm Architecture

v

2-10
2-12
2-12
2-16
2-16
2-17
2-17
2-18
2-18
2-19
2-25

3-16

3.4.1
3.4.2
3.4.3
3.4.4

Supports Design Reuse.
Supports Component Reuse.
Easier Development Process.

More Efficient Implementation.

3.5 A Mapping Method from an OORA Method to a Design
Following OOD-Paradigm Principles

3.5.1
3.5.2
3.5.3

3.5.4

3.5.5

3.5.6

3.5.7

3.5.8

3.5.9

Background and Goals of the Mapping Method.
Overview of the Mapping Method.
Map All Objects Using an Object-Mapping Ta-

Structural Representation: Organize the Objects

into the Hierarchical-Structure Diagram.

Procedural Representation: Connect Objects with
Events Using the Event-Mapping List and Object-

Event Interconnection Diagram.
Mapping to Ada Specifications.

Develop Templates for Instantiating Object Man-

AEETS. . . . e

Develop the Standard_Engineering_Types pack-

age for Instantiating the Design.

Cross Check Transformations as a Tracing Step.

IV. Validation of the Mapping Method

4.1 Imntroduction

4.2 The Elevator Problem.

4.2.1
4.2.2
4.2.3

1.2.4

Important Products from March’s Analysis.
Elevator Object-Mapping Table.
Elevator Hierarchical-Structure Diagram. . . .

Elevator Event-Mapping List.

3-19
3-19
3-20

3-21

3-23

3-25
3-30

3-33

3-36
3-36

4-1
4-1
4-1

4-6
4-6
4-9

4.2.5 Elevator Object-Event Interconnection Diagram.
4.2.6 Mapping to Ada Specifications.
4.3 The Cruise Control Problem
4.3.1 Important Products from March’s Analysis.
4.3.2 Completion of Cruise Control Hardware Inter-
face Requirements.
4.3.3 Cruise Control Object-Mapping Table.
4.3.4 Cruise Control Hierarchical-Structure Diagram.
4.3.5 Cruise Control Event-Mapping List.
4.3.6 Cruise Control Object-Event Interconnection Di-
AETAITL. -« v o v e e e e e e e e
4.3.7 Mapping to Ada Specifications.

4.4 Analysis

4.5 Suggestions for Design Implementation

4.6 Simulation Implementation of the Elevator Design . . .

V. Conclusions and Recommendations

5.1 Summary of Contribution

5.1.1

5.1.2

5.1.3
5.1.4

5.2.1
5.2.2
5.2.3

Identification of Design Reuse Importance, Ben-

efits, and Characteristics.

A Mapping Method for Consistent, Reusable De-

Application to Larger Systems.
Timing and Sizing Studies.

Categorizing Reusable Designs by Application

Domains.

Vi

Page
4-13
4-15
4-15
4-16

4-19
4-21
4-23
4-23

4-29
4-31
4-31
4-32
4-32

5-1
5-1

5-1

5-1
5-2

5-3
5-3
5-4

5-5

5.3 Suggestions For March’s Analysis Method.

5.3.1
5.3.2

5.4 Closing Remarks

Appendix A.
Al
A2
A3

A3l
A3.2
A3.3
A34
A35
A.3.6
A3.7

A.4 System_Aggregate Packages

A4

A.4.2 Scheduler System_Aggregate.

AA43

A.5 Connector/Event Procedures

A5l
A5.2

Object Manager_Template
Object Managers

Make Requirements Tracing Easier.

Other Possible Uses.

e v e e

...........

Ada Specifications for the Elevator Problem
Standard_Engineering Types

......

Floor_Panel Manager.
Weight_Sensor_Manager. . .
Scheduler Manager.
Location_Panel_Manager. . .
Control Panel_Manager. . .
Floor_Sensor_Manager. . . .
Motor_Manager.

Elevator System_Aggregate.

Floor_Panel_Aggregate. . . .

Destination_Requested. . . .

Floor_Approaching.

vii

..........

..........

..........

A-13
A-15
A-19
A-22
A-25
A-28
A-31
A-31
A-32
A-32
A-33
A-33
A-33
A-34
A-35
A-36

Page

Appendix B. Ada Specifications for the Cruise Control Problem . . B-1
B.1 Standard_Engineering Types B-1
B.2 Cruise Control Object Managers B-4
B.2.1 Throttle_Control Manager. B-4
B.2.2 Speed Sensor Manager. B-8
B.2.3 ButtonsManager.. B-10
B.2.4 System States Manager. B-14
B.2.5 Timer Manager.. B-18
B.3 Cruise_Control Aggregate Package B-20
B.3.1 Cruise.Control_System_Aggregate. B-20
B.4 Connector/Event Procedures B-21
B41 TurnOn. B-21
B.4.2 SetSpeed. B-21
B.43 Update. B-22
Bi44 Brake. L B-24
B.45 Resume. B-24
B.4.6 Accelerate.. B-24
B4.7 Turn Off. B-25
Appendix C. Ada Package Bodies for Simulation Implementation of the
Elevator Problem L C-1
C.1 Floor.Panel Manager. C-1
C.2 Weight Sensor_Manager. C-4
C.3 Scheduler Manager. C-4
C.4 Location_Panel Manager. C-15
C.5 Control_Panel Manager. C-16
C.6 Floor_Sensor.Manager. C-18
C.7 Motor.Manager. C-19

......................................

3.10.
3.11.

4.1.

4.3.

List of Figures

Page
Composition Hierarchy 2-6
Seniority Hierarchy 2-8
Granite Sentry Model Solution Architecture 2-11
RAPID Hierarchy 2-13
Example of an Entity-Relationship Model 2-14
The Keystone Packaging Schema for the Previous Figure 2-15
Concept Map of “Concept Maps™ 2-22
Static Relationship Diagram for “List” Object 2-23
Dynamic Relationship - State Diagram for “List” Object 2-24
SEI Overall Software Architecture 3-6
Executive-Level Connection-Spark Conversion Routine 3-7
SEI System-Level Architecture 3-8
SEI Executive Level Architecture 3-9
Connection Manager Software Architecture 3-10
Turbofan Engine Description 3-11
Turbofan Engine Object Diagram 3-12
Object Manager Template Example 3-14
Burner Object Manager Package Specification 3-15
Hierarchical-Structure Diagram 3-24
Object-Event Interconnection Diagram 3-29
Elevator Hierarchical-Structure Diagram 4-8
Elevator Object-Even: Interconnection Diagram 4-14
Cruise Control Hierarchical-Structure Diagram 4-24

Figure

4.4. Cruise Control Object-Event Interconnection Diagram

X1

List of Tables

Table

3.1. Object-Mapping Table

4.1. Elevator Object-Mapping Table

4.2. Cruise Control Object-Mapping Table

X1

...............

...............

...............

Page
3-22

4-7
4-22

AFIT/GCS/ENG/90D-13

Abstract

_-Design reuse has more potential for increasing the productivity of software
development and maintenance than do traditional approaches to software reuse that
emphasize reuse of smaller components. Current software development methods do

not promote design reuse.

The literature contains limited documented research on the subject, but enough
that some design reuse principles can be gleaned. Among these principles are that
reusable designs should be applicable within some domain of application, have a
consistent structure, provide a method for instantiating the design, avoid object

nesting, and promote reuse of smaller components as well.

A design mapping method from an object-oriented requirements analysis to
a design that follows the principles of design reuse is presented.’ The mapping
method involves two transformation steps and introduces four representation tools
for conducting the transformations. These tools are the Object-Mapping Table; the
Hierarchical-Structure Diagram, which represents the static structure of the design;
the Event-Mapping List; and the Object-Event Interconnection Diagram, a graphical
representation of the Event-Mapping list to show the design dynamics. The second
step transforms these representations into Ada specifications. Design templates are

developed to aid in this transformation.

The design method is applied to two problems to demonstrate the consistent
designs it produces. The first problem is then carried through to completion to

demonstrate its feasibility and ease of implementation.

X1

MAPPING AN OBJECT-ORIENTED REQUIREMENTS
ANALYSIS TO A DESIGN
ARCHITECTURE THAT SUPPORTS DESIGN AND
COMPONENT REUSE

I. Introduction

Software reuse is a much touted solution to the software crisis. But is it work-
ing? Are we using the right methods in our quest for increased productivity through
reuse? Are we approaching this problem from the right level? This thesis addresses
these questions, suggests some answers, and presents a method for achieving greater

reuse potential and benefits through design reuse.
1.1 Background-Problems with Current Reuse Approaches

A common complaint by the computer community is : “Current approaches to
software reuse have not lived up to reusability’s potential to dramatically improve
software productivity and maintainability” [Kaiser and Garlan, 1987:pp17]. There
are many reasons software reuse is not more common; they fall into a number of
categories: technical, managerial, contracting, etc. The concentration in this thesis
will be on technical impediments. In particular, it focuses on the problem of a
general emphasis on reuse at the “small” level and that common software design

methodologies do not support reuse.

1.1.1 Too Much Emphasis On Reuse in the Small. Biggerstaff and
Richter pointed out that reuse of larger software components leads to larger reuse
payoffs [Biggeistaff and Richter, 1987:pp42]. Tracz’s paper concludes that “most

programmers tend to view reusability from the perspective of simply reusing code

1-1

when reusing other programming artifacts (designs, specifications, and tests) leads

to a more productive [development] environment” [Tracz, 1986:pp175].

Biggerstaff and Richter contrasted the differences in code reuse versus design
reuse in their paper on reusability directions. They pointed out that the payoff for
reuse of software modules quickly reaches a ceiling that is difficult to surpass. Design
ideas are often much more reusable than software modules. They complained that
no method exists for representing designs, unlike code, which is represented in high-
order programming languages. They suggested that design reuse is the only way we
can come close to an order-of-magnitude increase in productivity or quality. They
listed as “Research Issues” properties that design representations need to exhibit.
Among these are what they called “partial specifications.” These are “partial archi-
tectuies” or “partial structures” which they say are “highly reusable, but the details
of these typically are not.” They must be filled in by the particular implementation.
Theyv concluded by saying that “Design Reuse has the greatest potential leverage [to
increase payoffs in reuse], but significant representational breakthroughs are needed

to realize its full potential.” [Biggerstaff and Richter, 1987:pp42-48]

1.1.2 Current Methods Do Not Support Reuse. Tracz pointed out
that one of the reasons programmers do not reuse code is that “there are no software
development methodologies that stress reusing code, let alone reusing a design, or
a specification” [Tracz, 1986:pp172]. The Command and Control Systems Office
(CCSO) also reported the lack of a standard design methodology that supports
reuse [CCSO, 1988:ppl5].

Proponents of Object-Oriented Design (OOD) claimed it to be the methodol-
ogy able to make reuse practical [Meyer, 1987:pp53]. The principle of OOD is that a
system’s modular decomposition is based on objects from the problem and solution
space, rather than on the functions performed. This allows modules (objects) to

be classified and grouped into classes for the purposes of reuse [Kaiser and Garlan,

1-2

1987:pp55-63]. OOD is based on good principles and works well for programming in
the small. For example data structures, device controllers, devices simulators, etc.,

can be defined and grouped in a fairly natural way [Booch, 1987:pp45-112].

Apparently, the dilemma is a general lack of a method for applying OOD for
larger systems development. Probably the most commonly referenced method for
applying OOD is Booch’s method of “Developing an Informal Strategy,” and then
“Formalizing the Strategy” [Booch, 1983:pp38-44,71-79,130-143]. Booch credited
Abbott with the idea. The method relies on using natural-language descriptions
as a first step toward designing systems. The problem with the strategy, in terms
of large scale reuse, is that it will create unique solutions for each problem. Just
as different individuals will describe problems and solutions differently, so will the
solutions based on these narrative statements be different. The resulting solution is
designed for a particular problem, not a class of problems. A similar analysis could

be made for other commonly used development methodologies.

Reuse in the large is needed to achieve large gains in software development
productivity [Biggerstafl and Richter, 1987:pp46-48] [Tracz, 1986:pp175]. A method
of designing software that solves classes of problems is needed to achieve these gains.

Such a method would systematically develop similar solutions for similar problems.

1.2 Problem Definition

The objective of this thesis is to develop a method to map from object-oriented
requirements definitions to designs that exhibit principles consistent with design
reuse. This mapping method includes tools for design representation that demon-
strate consistency with these principles, are systematic, and create similar designs
for all problems within the application domain. Specific objectives of this thesis are

the following;:

a. Determine the principles on which design reuse should be based.

1-3

b.

1.3

Define design representation tools needed to represent designs consistent with

the above principles.

. Define steps, using these principles and tools, for developing consistent designs

with potential for reuse.

. Validate the mapping method by applying it to two problems and comparing

the results.

Scope

This thesis discusses problems and solutions for classes of problems mostly

within the scope of embedded-Ada applications (for which Ada was initially devel-

oped). The principles discussed, however, certainly apply to a much broader range.

This scope excludes discussion of approaches to solving classes of problems used by

4th generation languages and code generators.

1.4

(@2}

1.5

Approach and Overview

This research consists of five phases:

. An investigation into current methods of design reuse under research.

A case study of a particular design-reuse approach to glean the principles used.

. The definition of a mapping method from an object-oriented requirements def-

inition to designs that exhibit these principles.

. First validation step - apply the mapping method to two problems and compare

results.

. Second validation step - implement one of the resulting designs to demonstrate

its usabihty.

Maximum Expected Gain

The maximum expected gain from this research is as follows:

1-4

e An awareness of the importance and potential of reusing at the design level.
e An awareness of some of the research being done in the area of design reuse.

e An appreciation of the importance of consistent designs, at least within an

application domain. This is a first step to design reuse.

o A useful mapping method from an object-oriented requirements definition to

designs that are consistent, for embedded event-response applications.

o Further direction in this area through suggestions of follow-on research.

1.6 Sequence of Presentation

The remaining chapters of this thesis follow the phases of research discussed

in Section 1.4, Approach and Overview, as described below.

Chapter II lays the foundation of the thesis by reviewing the current literature
on design reuse and object-oriented requirements analysis. The chapter starts by
discussing design reuse terminology, characteristics and benefits of reusable designs,
and how domains for reusable designs are defined. Design structures are then catego-
rized to provide context for further design discussions. Existing research and projects
that emphasize reuse of designs are then presented and discussed. Next comes an
enumeration and discussion of the ways reusable designs can also support smaller-
component reuse. Object-oriented requirements analysis (OORA) is then presented
and contrasted with other forms of requirements analysis. OORA concepts and tools

are then presented and discussed.

Chapter 1II develops the method of mapping from an OORA to design. The
foundation for the mapping method is first further developed with detailed descrip-
tions of March’s OORA method and the OOD Paradigm design method. Benefits
and advantages of using an OOD-Paradigm-like reusable design are then listed and
described. The mapping method itself is then described. It maps from March’s

method to a design following OOD-Paradigm principles. Both major steps of the

1-5

mapping method are described in order: first a mapping from the analysis to design
representation tools developed in this thesis, then a mapping from these representa-

tions to Ada specifications.

Chaprer IV validates the design mapping method by applying it to two different
problems. The primary objective is to demonstrate how the method develops similar
designs for different problems. This chapter applies the first step of the mapping
method to the two problems; the second step, mapping the results of the first step
to Ada specifications, is included as appendices A and B. The design results are
discussed in an analysis section that compares the results to the list of benefits and
advantages of rcusable designs developed in Chapter 111. Suggestions are then made
for the implementor of the designs. As an additional validation step, one of the
designs is implemented and the results are discussed; the implementation code is

included as appendix C.

Chapter V Summarizes the contribution of this thesis, suggests and discusses
follow-on research that needs to be done, and makes some hindsight coinments on

the use of object-oriented requirements analysis.

1-6

II. Literature Survey

2.1 Introduction

This chapter lays a foundation for the idea of designing to solve classes of
software problems instead of individual problems by reviewing the literature on this
and related topics. Terminology is a problem: what do you call a design solution
intended to solve more than one problem in an application domain? Many authors
call them “reusable architectures” so this term will be adopted for this chapter.
Because the term design is more widely understood than architecture when describing

software, later chapters use the term reusable design instead.

Some definitions of reusable designs, as presented in the literature, are the
lead topic of the chapter. Domain analysis is then briefly discussed since it deals
with analyzing classes of problems instead of individual problems. Design structures
are categorized to provide context for discussing different kinds of reusable designs.
Some actual reusable designs and designs that apply reusable design principles are
then presented. Because component reuse is thought to be an important side ben-
efit of reusable designs, characteristics of a design that would support component
reuse are discussed. Object-oriented requirements analysis is then discussed to lay a

foundation for the mapping method presented in Chapter III.

2.2 Definition of a Reusable Architecture

Parnas discussed the idea of reusable architectures in his 1976 paper on pro-
gram families. His context was multiple release software systems where significant
differences exist from one release to another. He said that multiple releases are gen-
erally conducted by first making one complete and working release, then following
releases are made by modifying the first release. He proposed the idea of forming a

baseline at some stage of partial design. This is the point where all releases share a

2-1

common design but will now diverge to satisfy their differing requirements. Having
a baseline point of partial design is a similar idea to that of reusable architectures.

The common partial design is reused for each different release. [Parnas, 1976:pp1-3]

No formal definition of a reusable software architecture can be found in a
dictionary or textbook. It is an approach to software building called by different
names by different people. For instance, Brown and Quanrud called then “Generic
Architectures” [Brown and Quanrud, 1988:pp390], Richard D’Ippolito called them
“Models” [D’Ippolito, 1989:pp256] but his research team (the Software Architectures
Engineering Project (SAE) at the Software Engineering Institute (SEI)) used to
call them “Paradigms™ [Rissman and others, 1988:pp1]. D’Ippolito explains in his
paper that they changed their terminology from “paradigm” to “model” and more
recently to “structural models.” Ted Ruegsegger called them “generic functional
architectures” [Rucgsegger, 1988:pp16]. Batory, Barnett, Roy, Twichell, ana Garza
called them generic architectures and defined them as follows: “An architecture is
a template in which building-blocks can be plugged. Interfaces are standardized to

make blocks interchangeable” [Batory and others, 1988:ppl1].

2.3 Characteristics and Benefits of Reusable Architectures
Based on the literature cited later in this chapter, reusable architectures can

be characterized as follows:

1. Applicable within a problem/application domain.

2. Has a consistent structure.

3. Provides a general solution to a class of problems.

4. Provides a method for instantiating specific solutions.

5. Designed to promote reuse of components.

A reusable architecture is a template for solving problems within an application

domain. A reusable architecture includes a design structure as a minimum. It

2-2

may also include a set of templates for instantiating the design as in the SEI’s
OOD-Paradigm [Rissman and others, 1988:pp53], or a set of reusable subcomponents
applicable within the domain and designed to be used in the architecture as with

the RAPID architecture [Brown and Quanrud, 1988:pp390].

Richard D’Ippolito, of the SEI's SAE project, who called reusable architectures
“Models,” defined them as follows:

Models are general solutions to problems and provide reuse at the de-
sign level because they are expressed in a reusable, adaptable form. The
adaptability is provided by parameterizing the services so that they may
be scaled to tit a particular application of the model. This requires the
model to present to the designer a clear sense of the general problem the
model solves and to present to the implementor the means to create an in-
stance of the model that solves the specific problem. In theory, the model
represents captured science, and the parameterization is what allows the
engineer to apply the science to a specific problem. A good model will
be capable of being applied to the expected range of applications with
no change to its working structure and with predictable performance.
[D’Ippolito, 1989:pp258]

D’Ippolito also quoted Baber as saying the following:

Especially noteworthy is that the engineer employs a scientific, theoret-
ical foundation to verify - by systematic calculation before the object
is actually built - that a proposed design will satisfy the specifications.
[D’Ippolito, 1989:pp257]

D’Ippolito was saying that a model solution is the tool the software developer

needs to accomplish this — he would then be functioning as an “Engineer.”

2.4 Domain Analysis

The source of information needed to create a standard architecture is certainly

some type of domain analysis. Like reusable software architectures, domain analysis

2-3

has a variety of interpretations. Berard said the reason for conducting an analysis
1s to identify reusable items within the domain, that is, items which may be reused
to build multiple applications within the domain. He defined “domain” in domain
analysis to mean “application domain,” for example, graphical user interfaces, em-

bedded missile applications, decision support systems, etc. [Berard, 1990a:pp4].

Prieto-Diaz made the following statement on the goal of domain analysis:

...we try to generalize all systems in an application domain by means
of a domain model that transcends specific applications. Domain analy-
sis i1s thus at a higher level of abstraction than systems analysis. In
domain analysis, cc.nmon characteristics from similar systems are gen-
eralized, objects and operations common to all systems within the same
domain are identified, and a model is defined to describe their relation-
ships. [Prieto-Diaz, 1987:pp347]

Brown and Quanrud stated that a domain analysis is conducted to establish
the scope of the domain. “It [the domain analysis] should identify the require-
ments that are common to the applications of the domain ...” [Brown and Quanrud,

1988:pp391].

In terms of what should be included in a domain analysis, Brown and Quanrud

also stated the following:

The domain analysis must also include the development of the prelimi-
nary design for the architecture. The design must be specified to some
level of detail in order to know whether it can be shared by all of the
applications within the scope of the domain. Applications that cannot
share a common design cannot be included in the same domain. Thus,
the design plays a critical role in determining the scope of the domain
itself. [Brown and Quanrud, 1988:pp391]

Thus, the expected products of domain analysis vary depending on the writer.

Brown and Quanrud were looking for a high-level design; Prieto-Diaz was looking for

2-4

reusable library components, domain standards, and reuse guidelines. Prieto-Diaz
conceded that no methodology or formalization is currently available for the domain
analysis process or products, and that most current interest is on the products more

than on the process of obtaining them [Prieto-Diaz, 1987:pp347).

2.5 Categories of Architecture Structures

Most design hierarchies represent some type of layered architecture. The dif-
ference between types is in how the layers are abstracted. We will see that the layers
may be viewed as successive “virtual machine” layers (the seniority hierarchy), or
successive decompositions of, or compositions to, a high-level context diagram (the

composition hierarchy).

For object-oriented systems, Seidewitz referenced Rajlich in defining two or-
thogonal hierarchies: the composition hierarchy and the seniority hierarchy. Seide-
witz pointed out: “The composition hierarchy deals with the composition of larger
objects from smaller component objects. The seniority hierarchy deals with the
organization of a set of objects into ‘layers.” Each layer defines a virtual machine

”

that provides services to senior layers {Seidewitz, 1989:pp97].” Rajlich said a com-
mon misconception is to equate these two hierarchies. Rajlich actually called the
composition hierarchy the “parent-child hierarchy,” since he was looking at them
from a top-down perspective. He said that this hierarchy deals with the decompo-

sition of larger packages into smaller packages. [Seidewitz, 1989:pp97-102] [Rajlich,
1985:pp719]

Sidewitz pointed out that the composition (parent-child) hierarchy can be di-
rectly expressed by leveling diagrams (much like with data-flow diagrams as Press-
man explained the principle originated by Yourdon, Constantine, Riggs, Gane, and
Demarco [Pressman, 1987:pp166-172]). The top level is like a context diagram in the
sense that it can show an entire system interacting with external objects. Succes-

sive diagrams are then produced decomposing the components into children at each

COMPOSITE '
\ A

COMPONENTS

Figure 2.1. Composition Hierarchy
[Seidewitz, 1989:pp98] '

level (Figure 2.1). Finally, at the lowest level, objects are completely decomposed
into primitive objects such as small subprograms and state/data stores. [Seidewitz,

1989:pp97-98]

Conceptually the composition architecture is a tree. In another paper, Ra-
jlich called the composition hierarchy a “system tree” [Rajlich, 1984:pp192]. The
seniority hierarchy is not necessarily a tree; it can be expressed by a single diagram
with the different virtual layers separated by horizontal lines (Figure 2.2). Using
the convention of Rajlich, senior layers call junior layers, but not vice-versa (Ada’s

exception propagation is an exception to this rule) [Rajlich, 1985:pp719]. In Ada

2-6

senior layers “with” junior layers. Senior layers treat the junior layers as a set of
primitive operations in an extended language. Each junior (virtual) layer is designed
using the principles of abstraction and information hiding. That this architecture
need not be a tree is seen by recognizing that two modules in a senior layer can call

the same operation in a junior layer.

An advantage of the seniority hierarchy is the reduced coupling it encourages
between layers. Junior layers know nothing about the senior layers calling them, and
senior layers do not need to know how junior layers accomplish their work, they see

only their interfaces.

Designs resulting from a Structured Analysis and Design Technique (SADT)
approach generally would be a composition hierarchy. The concept of top-down

leveling used by SADT results in the parent-child structure.

2.6 Survey of Existing Reusable Architectures

2.6.1 SEI’s “Structural Model” Solutions Overview. Much work in
the area of standard architectures has been done by the the SEI's SAE Project led by
Richard D’Ippolito. Their foundational effort appears to be their 1988 Report: “An
OOD Paradigm for Flight Simulators, 2nd Edition,” [Rissman and others, 1988:pp1-
120]. It described the design for a reusable architecture for the flight simulator
domain, and applied it to the engine “system” of a flight simulator. They have
also released a follow-on report that applied the architecture to the electrical system
of a flight simulator at the “system” level of the architecture [Rissman and others,
1989a:ppl-166].

The flight-simulator architecture has aiso been applied to the Millimeter-Wave
Seeker Missile Under the Ada Shadow program by Hercules Defense Electronics,

[D’Ippolito, 1989:pp261,264]. The SAE project team has also helped Space Com-

mand develop a “structural model solution” (See Section 2.6.3).

t ;Q
-1

VIRTUAL
MACHINE
INTERFACE 1

\

/ \ VIRTUAL
MACHINE
S INTERFACE 2

e

Figure 2.2. Seniority Hierarchy
[Seidewitz, 1989:pp99]

2-8

2.6.2 SETP’s OOD-Paradigm for Flight Simulators. The OOD-Paradigm
report presented a unique architecture. This architecture has characteristics of both
the composition hierarchy and the seniority hierarchy, with some unique character-
istics of its own. It is similar to the composition hierarchy in the sense that each
of the major software units (“executives”) is decomposed through two sublevels. It
resembles the seniority hierarchy in the sense that all the decompositions follow a
parallel layering pattern (Figure 3.1). In the implementation the decompositions are
articulated as compositions: each higher level is actually an aggregate of the lower-
level components (that it was decomposed to during analysis). Higher levels are
implemented as data structures containing instances of the lower-level components.

[Rissman and others, 1988:pp7-10]

The OOD-Paradigm’s design team started the project with two basic goals:
eliminate nested implementations of objects (rationale discussed in Section 3.4.4)
and simplify dependencies among objects. Notable characteristics of the architecture

are the following:

1. The architecture consists of logical layers replacing the usually nested objects
found in a composition hierarchy. Though the control flow follows the hierar-
chy, data generally flows across the hierarchy, that is, data may pass directly
between different major software units without going up and down the hierar-

chy.

2. Templates are used for instantiating the architecture for new applications

within the flight-simulator domain.

3. Connectors are used to connect objects. This reduces coupling and renders the
objects themselves more reusable since there are no direct dependencies (Ada

“with”ing) between objects.

2.6.3 Granite Sentry Command and Control System. The Air Force

Space Command’s Granite Sentry Program at Peterson AFB is using the SEIl's

2-9

“model solution” approach for a C*I application. They have consulted with The
SAE Project team at the SEI for help in developing their model solution. The
application is a multi-phase upgrade and replacement of the NORAD Computer
System (NCS) and the Modular Display System (MDS) in the Cheyenne Mountain
Complex of the North American Aerospace Defense Command (NORAD). Granite
Sentry is implemented using the Ada language. [Goyden, 1989:pp40}

The message translation and validation part of the system was implemented
using the SEI's model solution for message handling. Many types of messages must
be handled (about 60 kinds, for example, air-related messages, missile-related mes-
sages, sensor messages, etc.). The recurring problems were identified and templates
were developed for implementing instances of the message types. The reusable ar-
chitecture is represented by the hierarchy of components needed to be combined to
instantiate a message type (Figure 2.3). This same solution has been used for other

C®I applications [Rissman and others, 1989b:pp1] [Goyden, 1989:pp43-50].

Granite Sentry’s design methodology follows the principles recommended by
the SAE Project at the SEI [Rissman and others, 1989b:pp56-67). The project
tcam utilized the structural-model concept to employ an incremental, depth-first
software development process. First they were able to speed the design phase by
abstracting the details of how different messages types are handled. Then they
developed a working prototype that fully implemented the handling for one message
type. This was then used as a model to develop the templates so software for the
other message types could be instantiated. They found that this approach resulted
in higher productivity (34 Ada lines per programmer-day), less documentation, less

test effort, and more efficient reviews than traditional methods. [Goyden, 1989:pp49]

2.6.4 RAPID. Another research project using reusable designs is the Army
Information Systems Engineering Command’s RAPID project (Reusable Ada Pack-

ages for Information System Development). The application is a management infor-

2-10

Typscastsr

Mods! Solution

Message
Typecaster

-
Composite
Typecasters
—X
Discrete
Typecasters
Generic
Discrete
Typecasters
LEGEND
(Ads packages qonoralod\
from templates
Ada utility packages
Ada genenc packages
Ada package
> 3,;:’.:‘..:‘?:::

EXR TV
Mods] Solullon

Message_ICD
Generic
ICD_Utilities
Field_Utilities

Figure 2.3. Granite Sentry Model Solution Architecture
[Rissman and others, 1989b:pp45]

mation system. The commonality basis for the architecture is resource management.

[Ruegsegger, 1988:pp16]

The RAPID architecture is a classic functional decomposition and forms a tree
(Figure 2.4). Reuse of the architecture is achieved through the use of Ada generics
in the leaf modules. These modules are instantiated for the “discrete resource of
interest” (like ammunition, repair parts, personnel, blood products, etc). Among

their findings Ruegsegger reported the following:

The generic architecture is a concrete implementation of the concept of
design reuse. The method devised for transforming SADT models to Ada
PDL provides a clear link between the two disciplines and preserves all
design decisions embodied in the original architecture model.

The development and use of generic architectures fosters the establish-
ment of standard architectures and promotes the habit of designing for
reusability. The generic architecture includes commonly applicable types
and operations, and it identifies for the developer those that need to be
defined. This has long-term benefits in the form of consistent, more easily
maintainable software architectures. [Ruegsegger, 1988:pp22]

2.6.5 University of Texas DBMS. [Batory and others, 1988:pp1-12]

Reusable architecture research has also been done at the University of Texas
on a DBMS. Using E-R (Entity-Relationship) modeling, they have developed an
architecture and a set of building blocks for interfacing the architecture components
using standardized interfaces. They claimed to be able to assemble a file-management
system in minutes that otherwise would take man-years of effort and hundreds of
thousands of dollars using traditional methods. Their basis of commonality is file-
management systems. Their method of customization is “include commands” in

their C compiler; needed modules are included and unneeded modules are left out.

2.6.6 Kiem’s Keystone Methodology. [Kiem, 1989)

2-12

TRACK AND

REPORT

CONTROL
RESOURCE
COORDINATE
ACTIONS TRACK
RELEASE ORDER ASSIGN TRACK TRACK REVIEW
ASSETS ASSETS ASSETS BALANCES STATUS

PLANS

[Ruegsegger, 1988:pp18]

Figure 2.4. RAPID Hierarchy

Kiem'’s Keystone Methodology is included not because it is a reusable design

but because it develops designs that follow some of the principles supported by

this thesis: use of intermediary components to eliminate direct “with”ing between

problem-space objects (to enhance component reuse), and higher-level components

that are actually aggregates of lower-level objects to flatten the architecture and

increase efficiency. Here is the abstract of Kiem’s paper:

The Keystone Methodology uses Entity-Relationskip modeling to deter-
mine an optimum object-oriented packaging structure, which will exhibit
minimum coupling and inter-dependencies between elements of a system
and therefore maximum reusability potential. Furthermore, the result-
ing organization of the data dimension permits extensive use of a limited
range of generics to provide complete data manipulation through the
use of relational operations. The form and disposition of concurrent ele-
ments of a system can also be determined directly from the E-R model.
The modeling process is proven and the implementation of the resulting
design is systematic.

The Keystone methodology develops a design structure that is a composition

2-13

Integration of Model

Associative o Ae
Entity Entity : Ater,
8C_.D

Reiationship e -
1 Zoﬁ
1
A _<> 1 B c
u

a._c -
Gy wen | TBF xews T
Lo C

Allr A2 04_ At 82
.

Integration of BC

Figure 2.5. Example of an Entity-Relationship Model
[Kiem, 1989:pp101]

hierarchy. The designs are similar to the OOD-Paradigm in the way that higher-level
components are actually aggregates of instances of lower-leve_l components. The Key-
stone methodology uses E-R modeling to identify the components and aggregates.
Components are from the problem space, aggregates are the relationships between

the components as identified by the E-R modeling (See Figures 2.5 and 2.6).

The method is proven in the sense that it has been applied to the development
of a now-fielded Air Force system: SARAH-lite. SARAH-lite was developed at the
Command and Control Systems Center at Tinker AFB, using a Rational™ envi-
ronment. The implementation runs on Zenith personal computers. The application

is a message preparation workstation.

Kiem claimed the method is systematic, which he said is contrary to traditional

OOD (informal strategy - formal strategy described in Section 1.1.2).

2-14

integration of Model 'I

1
A 8C 1
Relotionships L »]B_C[1 | Associative \
. Entity
ln‘togrotlon)

- =

Entities f

Figure 2.6. The Keystone Packaging Schema for the Previous Figure
[Kiem, 1989:pp102]

2-15

2.7 Characteristics Needed to Support Component Reuse

In addition to supporting design reuse, the design of a reusable architecture
should also consider supporting reuse at the component level. Actually, many of the

concepts of reusable design support component reuse as a side benefit.

Two kinds of component reuse are at issue:

1. “Swapping out” components in an implementation.

2. Reusing components between implementations.

The first kind would be useful for trying different components that perform
the same function, but with somewhat different characteristics. For example, an
electronic combat model may have several candidate radar units that model corre-
sponding alternate choices for radar components in the actual radar; the software
objects that model these radar components could be swapped out to compare effects

on performance.

The second kind is the conventional type of reuse we usually think of. This
would normally be intra-domain reuse. The SAE team made the following comment

on intra-domaln reuse:

Flight simulators provide natural opportunities for reusing software. First,
different aircraft have the same kinds of components, e.g. engines, fuel
systems, electrical systems, etc. [Rissman and others, 1988:pp4]

These design characteristics are discussed in the following sections.

2.7.1 Object Oriented. This discussion brings to light an important char-
acteristic needed for the software components to be reusable: they should model their
real-world counterparts when possible. To do this the architecture should represent

an object-oriented design. Richard St. Dennis at Honeywell pointed out that for

2-16

a component to be reusable it should represent an object-oriented mapping of the
problem to the solution; that is, the software solution represents the human view of

the original problem [St. Dennis, 1987:pp515].

St. Dennis continues with the following:

Reusable software should act on objects explicitly. What we are advo-
cating here is a clear definition and method of ‘acting’ on objects. All
actions or operations on objects should be defined as subprograms (or
their equivalent) with the objects as parameters. Furthermore, the ob-
jects, or at least their types, should be ‘packaged’ as close to the definition
of the operations on them as possible. It is better not to use global data
that is changed implicitly by routines to which it is visible but to pass
the data to routines as parameters making it explicit that these routines
are actors/operators on the data and this is just how this data will be
treated (e.g. as input only, as a constant, and so forth). [St. Dennis,
1987:pp515]

2.7.2 Explicitly Defined Purpose/Function. Each object must have an
explicitly defined purpose. SofTech pointed out that each component intended for
reuse should implement a single well-defined function. The scope within which the
component is to be used and the degree of generality should be clearly stated. [SofT-
ech, 1935:pp28]

2.7.3 Independent Objects. Low coupling and high cohesion is the key
here. Coupling must be kept to a minimum for components to be moved or ex-

changed.

Examples of design methods which lead to low coupling are the OOD-Paradigm
and Keystone methods (both presented earlier). Both use intermediary modules to

entirely remove direct coupling between software objects.

The CCSO pointed out the compromise that often must be made between
coupling and the use of system-wide tools for standardization. Although they used

an object-oriented design, their components were not reusable due to dependencies on

2-17

global tool packages. They standardized on the use of tools for buffer management,
linked-list manipulation, 1/0O, etc. Because of this, components were not reusable

since they depended on all these tools and associated types [CCSO, 1988:pp11-12].

Hardware, operating system, and compiler dependencies also must be kept to a
minimum. Of course, some software components require these kinds of dependencies
due to the nature of their function. Both Brown and the CCSO pointed out the need
to isolate these necessary dependencies. The amount of components with these kinds
of dependencies should be minimized; they should be clearly labeled and perhaps
grouped into a kernel layer. [Brown and Quanrud, 1988:pp391] [CCSO, 1988:pp10]

2.7.4 Layered Architecture. The principle of designing at the higher lev-
els while abstracting the details of lower levels is fundamental in software design.
D’Ippolito at the SEI reminded us that software designers quickly get bogged down
in too much detail if they do not follow this principle [D’Ippolito, 1989:pp258]. This
is an important principle for reuse as well; the objective is to reuse at a high level
without the necessity of concern about how the low-level components accomplish

their tasks.

SofTech also pointed out that a layered architecture contributes to reusability
by giving us reuse levels. Different concerns can be separated into discrete layers
that can be separately replaced or tailored without affecting other layers [SofTech,
1985:pp22]. Ideally, the layers should decompose just as the problem space or real-
world object would. In the SEI's OOD-Paradigm report, a middle layer is an engine
mapping and the components on the next level down represent real-world engine

components [Rissman and others, 1988:pp19].

2.7.5 Standard Interfaces. The University of Texas applied this principle
of standard interfaces in their approach to generic architectures. They said the

following:

2-18

Every object of an architecture is associated with a distinct class of mod-
ules. All modules are plug-compatible (for interchangeability), and each
module is a different implementation of the object.

Declaring an ad hoc interface to be a standard is the worst of all possibil-
ities. A better way is to 1) identify the class of implementations that are
to be supported, and 2) design the simplest interface that supports all im-
plementations of the class. The greater the number of implementations,
the more likely it is that the interface captures fundamental properties of
the object. Such an interface is no longer ad hoc because it is justified by
its demonstratable generality. We call this the simplest common inter-
face (SCI) method of standardized interface design. [Batory and others,
1988:pp3]

2.8 Object-Oriented Requirements Analysis

The foundation of the design phase, where the reusable designs are constructed,
1s the requirements analysis phase which precedes it in the software development
lifecycle. The requirements analysis phase is very important as the design is derived
from products of the analysis. In preparation for the mapping method presentation
in the next chapter, which maps an object-oriented analysis to design, this section
overviews object-oriented requirements analysis. In addition to this, March’s analysis
method is discussed in more depth in Section 3.2, and some hindsight comments on

the use of object-oriented analysis are given in Section 5.3.2.

Object-Oriented Requirements Analysis (OORA) is an approach to require-
ments analysis that moves the introduction of object-oriented techniques to an ear-
lier phase in the software lifecycle. An object-oriented approach is thought to map
more naturally to an object-oriented design than do other analysis methods [March,
1989:ppl1-2] [AFIT, 1990] [EVB, 1989]. Object-oriented approaches were pioneered
by Booch and Abbott as a method of exploiting the features and constructs pro-
vided by the newly developed Ada programming language [March, 1989:pp1-1]. This
method of using an informal strategy as the basis for object-oriented analysis is more

recently rejected by many. This is because it inherently lacks rigor due to the im-

preciseness of the English language [Ladden, 1989:pp86]. In his thesis, March cited

Pressman, EVB, and Ladden in saying the following:

Recent research suggests the use of object-oriented techniques in the
earlier phase of requirements analysis provides a more coherent approach
to object-o1 :nted development. A complete life cycle object-oriented
methodology provides a stronger framework for the application of Ada
in he management of software complexity. {March, 1989:pp1-2]

OORA can be contrasted to other more traditional methods of requirements
analysis such as data-flow oriented analysis and data-structure oriented analysis.
Data-flow analysis uses data-flow diagrams, a data dictionary to describe each “flow,”
and functional descriptions to describe each function (the nodes) in the data-flow
diagrams [Pressman, 1987:pp164-175]. DeMarco’s Structured Analysis, and Your-
don and Constantine’s Structured Methods and Structured Design are examples
of methods that are based on data-flow analysis (Do not be mislead by the word
“structured” in the names of these methods, these methods are not formal, they are
informal methods that use standard notations and embodiments of good practice
[Sommerville, 1989:pp179]). Data-structure oriented analysis methods focus on data
structure rather than data flow to represent software requirements. Key information
objects (also called entities or items) and operations are identified and a hierarchy
1s formed to represent the requirements. Warnier-Orr and Jackson System Develop-
ment are examples of methods that are based on data structure oriented analysis.

[Pressman, 1987:pp293-333]

OORA, on the other hand, describes a system as a series of interacting objects
(or classes, since an object is an instance of a class) [EVB, 1989]. The interactions
can be seen as messages or operations. Objects generally are named using nouns;
messages are generally named using action verbs [AFIT. 1990]. The objects and

messages are derived from a duescription of the problem.

2-20

'

Objects/Classes can be identified using a top-down decomposition of the prob-

lem using the following steps as presented by [EVB, 1989]:

View the system as an object, produce a precise and concise high-level descrip-

tion of the system.

Graphically represent the object-oriented composition of the system using se-

mantic networks.
Define the operations suffered by and required of the systc.. .
Describe the state information of the system.

Verify the object-oriented representation of the system.

AFIT described another method of identifying objects using concept maps.

Concept maps are similar to entity relationship diagrams but simpler. They consist of

nodes (ovals) and directed arcs. Node names represent important entities or concepts

about a topic, and the directed arcs represent relationships among them (Figure 2.7).

Concept maps are used as a tool to model the problem space. Concept maps can be

leveled by developing lower-level maps to model lower levels of abstraction. Solution-

space concept inaps are obtained by pruning the problem-space concept maps. Node

names can be mapped to objects and arc names to operations. [AFIT, 1990}

Both EVB’s and AFIT’s methods use object/class specifications to completely

describe each object identified. Object/Class specifications include the following:

A narrative description.

A graphical representation, both static and dynamic. The static representation
should be a semantic network (Figure 2.8). The dynamic representation may

be a state diagram, petri-net, or both (Figure 2.9).
Operations, both suffered operations ard required operations.

Possible states.

2-21

Require-
ments_
\nalysi

Promotes

Contains

Commun-
1cation

Graphical
Tool

between

Enhances

Relate

Under-

standing

Figure 2.7. Concept Map of “Concept Maps”
[March, 1989:pp2-16]

222

=] Length
=1 Full
Has_Attribute
LIST
Has_Part
] >=0 Element

Figure 2.8. Static Relationship Diagram for “List” Object
[EVB, 1989]

e Possible exceptions.

AFIT also used event-response lists and story boards to supplement the concept
maps and an overall object/class network diagram to summarize and show visibility
among all the objects [AFIT, 1990]. Section 4.3.1.1 contains an example of an event-

response list. See March’s thesis for an example of story boards.

March developed his version of an object-oriented analysis method in his thesis.
His method is intended mainly for embedded systems to be implemented using Ada.

March's method is similar to AFIT’s in that he used concept maps, story boards, and

2-23

Remove

Insert

Insert

Clear

Figure 2.9. Dynamic Relationship - State Diagram for “List” Object
[EVB, 1989]

no
£
&

event-response lists to communicate with the customer and identify objects/classes.
He also developed the idea of dividing requirements analysis into two steps: one
step for communicating with the customer/domain expert to obtain accurate and
complete requirements in a form the customer can verify and a second step for struc-
turing the requirements into a form the designer can more easily use to transform
into a design. He also introduced the idea of creating an object encyclopedia for

documenting the rough equivalent of a set of object/class specifications.

A more detailed presentation of March’s method is presented in section 3.2.

2.9 Conclusion

The science of reusing designs is in its infancy at best. This chapter contains
some principles that can be applied toward design reuse and some approaches that
are currently being tried. A fundamental principle needed for design reuse is design
structure consistency. If we can develop a method of representing designs and map-
ping to designs that produces consistent solutions for problems in the same domain,

then we are definitely on the right road to design reuse.

The OOD-Paradigm exhibits many of the principles needed for design reuse.

Its principles are presented and used further in the next chapter.

2-25

III. A Method of Mapping from uwie OORA to a Design That

Supports Reuse

3.1 Introduction

This chapter describes a method of mapping from the Object-Oriented Analy-
sis method proposed by Steve March in his thesis [March, 1989:pp1-1 ... A-89], to a
design following closely the principles of “An OOD-Paradigm for Flight Simulators,
2nd Edition” report written by the SAE Project team at the Software Engineering
Institute [Rissman and others, 1988:pp1-120]. The chapter starts by first summariz-
ing the products available from March's analysis method. It then gives a detailed
description of the SEI design. This provides the domain and range of the map-
ping method. Benefits and characteristics of the OOD-Paradigm architecture are

summarized and discussed. The mapping method itself follows.

We make the following assumptions about March’s analysis method and the

QOD-Paradigm:

1. March’s method provides a good representation of the requirements.

2. The SEI's OOD-Paradigm architecture represents a good design.
A design following the OOD-Paradigm architecture will exhibit the
benefits outlined in section 3.4. We are choosing to take a case
study approach to this report since it is assumed to be exemplary
of a reusable architecture approach to design.

These assumptions will be supported and discussed.

3.2 Overview of the Products of March’s Analysis Method
[March, 1989:ppl-1 ... A-89]
March’s method involves two major steps. each producing a set of products.

These products are discussed in the following sections.

31

3.2.1 Step-One Products. Step One is intended to document the require-
ments of the customer and domain expert. The tools used and products developed

reflect this goal. The products of Step One are the {ollowing:

e Define the overall purpose of the software. This is the starting point
for understanding the software to be developed. This description may vary in

length from one sentence to one page.

e Concept maps. These provide a general understanding of the elements of

the overall problem and their inter-relationships.

e Story boards. This is a sequence of paper drawings depicting a user-view
scenario of the system as it runs. It is an early paper prototype of the proposed
system. It portrays a sequence of actions and can be used to portray the

physical layout of screen displays, though it is not limited to this.

e Event-response lists. These complement the concept maps by listing the
sequence of actions (responses) to be taken in the event of a particular stim-
ulus. Both external and internal stimuli are listed in the event-response list.

Maximum response time is part of the event-response list.

e Known software restrictions. These can be non-functional requirements

(size and timing constraints), regulatory restrictions, security, etc.

e Metarequirements. These are design decisions made by the customer apri-
ori. An example is the use of an internal data base format to ensure compati-

bility with other existing or planned software.

3.2.2 Step-Two Products. Step-one products are transformed into step-
two products, in a value added manner, resulting in products intended to be more
suitable for use by the designer. March says that step two adds structure to the

products of step one. The products of step two are the following:

External interface diagram. Puts the software system in context with its

external environment.

High-level actor object identification. This is the analog of the main
driver in a program. It controls/coordinates the action of part, or all, of the

rest of the the software.

Organized preliminary object list. Objects are listed, grouped by class,

and formed into hierarchies when appropriate.

Message senders and receivers. This is a transformation of the event-
response list created in Step One. The main change is that the events and
responses are viewed as messages and an attempt is made to identify the
senders/receivers of these messages. Message may be forwarded from object

to object.

Object encyclopedia. - Each object/class is documented with an entry in

the object encyclopedia. Entries contain the following information:

— Textual description. This states the purpose of the class and miscella-

neous information not included anywhere else.

— Structure diagram. This shows attributes/subobjects. It looks like a
concept map but is limited to relations that are structural relations of the

class being discussed.

— Interface diagram. This is the communication of this object to other
objects in the system. This one also looks like a concept map, but it shows
the external view of the object/class. There should be a-correspondence
here between the intertaces to other classes and the messages received/sent
list.

— State transition diagram. This may help in identifying messages that

an object receives. It may also indicate that a certain message must be

3-3

received to transition the object into a different state. It is included if

appropriate.

— Message received/sent. Two lists naming the message and who it’s

received/sent from/to.

— Description of state limitations. Some messages may be received/sent

only when the object is in a particular state.
— List of exported exceptions. Included if appropriate.
— List of exported constants. Included if appropriate.

— Reuse considerations. Explains if the object/class is application spe-

cific or if it may be generalized for use elsewhere.

3.3 Description of the OOD-Paradigm Architecture
[Rissman and others, 1988:pp1-120]

This description continues from the outline of the OOD-Paradigm presented

in Section 2.6.2.

The design team started the project with two basic goals: eliminate nested
implementations of objects (rationale discussed in Section 3.4.4) and simplify de-
pendencies among objects. Notable characteristics of the architecture that will be

discussed are the following:

1. Logical layers replacing the usually nested objects found in a composition hi-

erarchy.

o]

Connectors for moving data between objects.
3. Templates for instantiating the architecture.

4. Object managers as the lowest level templates.

3-4

3.3.1 Structure Overview. The architecture consists of three logical levels
(layers): the executive level, the system level, and the object level. An executive
controls the update of a set of systems, a system controls the update of a set of
objects. In the context of the earlier discussion on the composition hierarchy, a set
of systems can be seen as the result of a decomposition of an executive; and a set of

objects is the result of a decomposition of a system (Figure 3.1).

Starting at the bottom, the fundamental units of the architecture are objects
and connections, which constitute the object level. Objects use mathematical models
to represent real-world entities. An object’s only interface to its environment is
through its connection object(s) (except possibly the global types package, called
Standard_Engineering_Types). In this way, objects operate in general ignorance of
the rest of the system. They map their inputs to their outputs and maintain their
state. The mathematical models, themselves, are provided by the manufacturer of

the aircraft components for the actual aircraft.

A connection is a mechanism for transferring state information between objects.
Invoking a connection results in reading the state of some objects on the connection
and broadcasting it to others. The two levels of connections are: executive level and
system level. Executive-level connections transfer state information between objects
in different systems, and system-level objects transfer state information between
objects in the same system. The object on one side of a connection may be a hardware

object. Connections perform data-type conversions when necessary (Figure 3.2).

Connecting procedures provide a consistent means of updating systems and
objects. Thus, connecting procedures provide a means for implicitly specifying con-
trol flow. No extraneous concepts or operations are required. They provide a locus

of control since all connections at an abstraction level are handled in one place.

A system, the middle level in the hierarchy, provides two abstractions. First,
it logically groups a set of objects and their connections. Second, it provides an

update abstraction to update the objecis as a unit in order to maintain system

3-5

Fight_Executive

Engine_System_Aggregate ’ Engine_System_Connections

I

nln_ou aoer_ou Jn-_ou an]a_vm OM Diffuser_OM Fcn_mq,ou enma_ou ew_cum_ou

548 8444

OM « Object_Manager

Figure 3.1. SEI Overall Software Architecture
[Rissman and others, 1988:pp15]

3-6

n—

with Standard_Engineering Types;
with Engine_System_Aggregate;
with Ignition_System_Aggregate;

with Flight_System_Names;

with Burner_Object_Manager;
with Ignition_Object_Manager;

separate (Flight Executive_Connection_Manager)
procedure Process_External_Connections_To_Engine_System is
Integrated_Drive_Energy : Generator_Object_Manager Energy;

Some_Spark : Ignition_Object_Manager Spark;
The_Burner_Spark : Burner_Object_Manager Spark;

function Spark_Conversion (In_Spark : in Ignition_Object_Manager.Spark)
return Burner_Object_Manager Spark is
begin
case In_Sparkis
when 0..2 =>
RETURN Burner_Object_Manager None;
when 3..9=>
RETURN Burner_Object_Manager.Low;
when 10..20 =>
RETURN Burner_Object_Manager.High;
end case;
end Spark_Conversion;

begin - Process_External_Connections_To_Engine_System
for An_Epgine in Flight Systems_Names Aircraft_Engines loop

Some_Spark := Igniﬁon_Object_Manager.Get_Spark__Frmn
(A_Ignition => Ignition_System_Aggregate.Igmtions
(Engines_To_lgnition_Map (An_Engine))),

The_Burner_Spark := Spark_Conversion (Some_Spark};

Burner_Object_Manager.Give_Spark_To
(A_Burner => ine_System_Aggregate.Engines
(An_Engine).The_Burner,
Given_Spark => The_Burner_Spark};
end loop ;

end Process_External_Connections_To_Engine_System;-

Figure 3.2. Executive-Level Connection-Spark Conversion Routine
[Rissman and others, 1988:pp29]

i
i

Engine_Sysiem_Aggregate Engine_Systam_Connections

L'J
o e

ek rorion o VU N S s

SEEEEEE

Figure 3.3. SEI System-Level Architecture
[Rissman and others, 1988:pp14]

state consistency. The system performs the update by gating, i.e. invoking, all of its

system-level connections to transfer the states of the connected objects. (Figure 3.3).

At the upper-level, an executive performs a similar abstraction as a system.
At update time it gates all the executive-level connections and then calls its systems
to do their updates as described above (Figure 3.4). Distributed processing could be

achieved by distributing each executive to run on its own processor.

3.3.2 The System Abstraction. A system is an aggregation of objects,

and the connections between the objects, with a common goal. For example, the

Fight_Executive

Figm_EnamL _Conneciions Emho'_&mun Ehat‘u_&pwn Fud]snam

£ f1E =

Figure 3.4. SEI Executive Level Architecture
[Rissman and others, 1988:pp13]

objects making up the engine system provide thrust; the objects of an electrical

system provide power. A system i: updated as a unit.

Each system includes an “aggregate” package. This package contains the actual
instances of the objects ior that system (Figure 3.5). This is possible because the
objects are abstract data types (private types) declared in each object manager.
This allows multiple instances of each object to exist. Operations on the objects
(implemented by the mathematical models) are of course part of the object managers

themselves. There is one object manager for each kind of object.

The developers employ an “object diagram” as a tool to map the real-world
objects to the architecture. Figure 3.6 represents the set of real-world objects being
mapped and Figure 3.7 is the object diagram mapping. Instantiation information for
the components of the architecture come from the object diagram once it is devel-
oped. The object diagram has icons that represent objects (rectangles), connections

(arrows), systems (roundtangles), and executives (shaded arcas).

3-9

Flight_Executive_Connectons

Engine_System_Aggregate

MJ_GA Rowrt_OM Rowr2_OM Burner_OM M»Jmou Fen_Ducti_OM Exhausi OM Engine_

+ ¢ 4 4
(cnms | rI) LJ) . (') C
C ;] C 1[11 II] I'"H r(:':: [l] rl
OM = Object_Manager

Figure 3.5. Connection Manager Software Architecture
[Rissman and others, 1988:pp13]

3-10

oM

Diffuser Fap Duct Bumer

Rotort Rotor2

(Bleed valve - not shown)

Figure 3.6. Turbofan Engine Description
[Rissman and others, 1988:pp18]

Engine Casing

Exhaust

insirumsntalion

‘

Diftuser -[

Fan
Duct

Drscharge Pressure
Drscharge Temparature
Drscharge Air Flow

inlet Pressure

Exhaust

Bleed
Valve

4

iniet Pressure
intet Pressure lnlel Air Fiow

Engine Casing

]

Pressure, Temperaiyre,

S l l'anng X3
Air Flow
inet Drsch Fan2 Drscharoe

p Pressure, Temperature, Pressure, Temperature,

Pressure, Temperature, Pressure, Temperaiure,

y

= -

Aw Flow

n hgghar

Ar Flow

I Rotort

A Flow Ar Flow

Ar Fiow

1 Pressure, Temperaiure,

Y Pressure, Temperaiure,

Pressure,
Temperaiure,
Air Flow

EI.SSWG.

Temparatire,
A Flow

Burner

[Rissman and

Figure 3.7. Turbofan Engine Object Diagram

others, 1988:pp19]

3.3.3 Templates For Recreating Architecture Parts. Templates are
a kind of generic used for creating instances of most of the components of the
architecture. Standard naming conventions describe the package and subprogram
specifications, the implementor supplies the implementation details. An exam-
ple of the notation is “< Object > _Object_Manager,” for the package name of
each object manager, where “< Object >” is replaced by the actual object name.
Also each object manager has exactly three types of suffered operations, which also
have standard names: “New_ < Object >" to create new instances of the object,
“Give. < externaleffect > _To” for writing external effects to an object, and
“Get. < object_output > _From” for reading the state from an object. Figure 3.8
shows a template ready to be used, in this case the object manager template, and
Figure 3.9 shows the object manager template after it has been instantiated for the

burner object.

Two steps are required to instantiate the architecture. First, an object diagram
must be created, which is then mapped to the components of the architecture. To cre-
ate an object diagram, the implementor first reviews the domain/requirements and
selects a set of real-world objects and connections. These are grouped into systems
foli. #ing real-world analogies. This information is mapped into an object diagram.

Once the object diagram is created, the architecture dictates the implementation.

An object diagram is created for eac. _ystem. The software architecture can
then be derived mechanically (instantiating templates) from the set of object di-
agrams. The implementor fills in the details of the templates and provides the
appropriate mathematical models for the bodies of the object managers. There is
potential here for an automated tool to parse the object diagrams and generate

filled-in templates.

3-13

with Standard_Engineering Types;
package <Object>_Object_Manager is

package Set renames Standard_Engineering Types;
type <Object> is private ;

type <Attribute_2> is 77;

type <Attribute_1>is 77;

function New_c<Object> return <Object>;

-1
~1 Description:

=1 This function returns a pointer to o new <object> object
—| representation. This pointer will be used to identify
—~| the object for state update and state reporting purposes.
-l

~| Parameter Description:

=1 return <object> which is an access Lo a <object> object.

procedure Give_<State_1>_To (A_<Object> : in <Objects;
Given_cInput>_<Type_1>: in Set.<Type_1>;
Given_<Input>_<Type_2> : in Set.<Type_2>;
Given_cInput>_<Type_3>: in Set.<Type_3>);

-1
~| Description:

=1 Initigtes a change in the specified <object> object’s

<1 state given the <input>_ctype_1>, <nput>_dype_2>,

~1 and the <input>_ctype_3>.

-1

~| Parameter Description:

~| A_cobject> identifies the <object> whose state is to be changed.
= Given_cinput>_cype_l> is the <input> <type_l>, in Munits
-1 Given_cinput>_ctype_2> is the <input> <type_2>, in units
-1 Given_cinput>_ctype_3> is the <input> air flow, in Nunits

-

pragma Ipline (Give_<State_1>_To);
Private

type <Object>_Representation;

~ incomplete type, defined in pachage body

type <Object> is socess <Object>_Representation;
— pointer to an <object> representation

end <Object>_Object_Manager;

Figure 3.8. Object Manager Template Example
[Rissman and others, 1988:pp42]

3-14

with Standard_Engineering Types;
peckage Bumer_Object_Manager is

peckage Set renames Standard_Engineering_Types;

type Burner is private;
- an Burner is an abstroction of a Burner within an Engine

type Sparkis (None, Low, Highj,
— burner needs only to Anow relative spark size

type Fud_Flowis (Nons, Flowing);
= the burner needs Lo know only if it has fuel available

function New_Bumer return Burner;

procedure Give_Inlet_Air_To
(A_Burper :in Bumner;
Given_Iplet_Pressure :in Set.Pressure;
Given_Inlet_Temperature : in Set.Temperature;
Given_Inlet_Air_Fiow :im Set.Air_Flow),

prooedure Get_Discharge_Air_From
(A_Burner : in Burner;
Returning Discharge_Pressurs :ocut Set.Pressurs;
Returning Discharge_Temperaturs : out Set.Temperaturs;
Returning Discharge_Air_Flow :out Set.Air_Flow),

proosdure Give_Fue_Flow_To
(A_Burner :in Burner
Given_Fual_Flow: in Fuel_Flow);

proosdure Give Spark_To (A_Burner :in Burner
Given_Spark : in Spark),

pragma [nline (Give_Inlet_Air_To,
Get_Discharge_Air_From,
Give_Fud_Flow_To,
Give_Spark_To)

private
type Bumer_Representation;
- incomplete type, defined in pachage body

type Burner is sccess Burner_Representition;
- pointer to an Burner representation

end Burner_Otject_Mansger;

Figure 3.9. Burner Object Manager Package Specification
[Rissman and others, 1988:pp23]

3.4 Summary of Advantages and Characteristics of the OOD-Paradigm

Architecture

3.4.1 Supports Design Reuse. Design reuse can be discussed at two lev-
els: reuse within an application and reuse between applications. Design reuse within
an application was the accomplishment of the OOD-Paradigm. They first demon-
strated the design for the engine system; then they used the templates to instantiate
the design again for the electrical system of the simulator in a follow-on report [Riss-

man and others, 1989a].

Design reuse between applications is reusing a design solution from one ap-
plication in a second different application. This idea can be further divided into
reuse within the domain and reuse between domains. Reusing the flight-simulator
solution for a C141 on a C5 simulator would be reuse within the domain. This thesis
presents a method that reuses the design between domains. We utilize the principles,
structure, and constructs of the design to achieve a mapping method that develops
designs that are similar to each other and that exhibit the benefits listed in this

section.
Many advantages are inherent in reusine designs. Some of them are the fol-

lowing.

e Less Testing Effort. Once the soundness of the basic design is established,
testing can be less stringent for reuses of the design. Also many of the test

procedures can be reused.

e Higher Reliability. Reliability will have been proven and refined through

previous uses of the design.

e Less Maintenance Effort. Maintenance personnel can more easily under-

stand the design since it consists of reoccurring patterns.

o Less Documentation Effort. Much of the documentation can be reused

from one instantiation of the design to the next.

3-16

3.4.2 Supports Component Reuse. The architecture supports both kinds

of component reuse mentioned in section 2.7 as follows:

e Objects can be exchanged for similar objects within an application because
templates and connections provide the plug-in type of interface needed for
“swapping-out” objects. Because connections insulate objects from compila-
tion dependencies, they provide a very elegant way to encourage this kind of
reuse. This kind of reuse is handy for modifying performance characteristics
of the simulator by exchanging an object for one that has somewhat different

characteristics.

Recompiling the package body of the changed object is all the recompiling
necessary since the specification of the object manager will not change. This
is true even if the new object’s type representation is somewhat different since

this private-type definition can be placed in the package body.

e Object reuse between applications will be enhanced since objects developed for
the flight simulator are not tightly coupled to the simulator. This low coupling
means the object 1s independent, only modeling some real-world abstraction,

and 1s easily reused in a different application.

3.4.3 Easier Development Process. Reoccurring design patterns and
low coupling will make the OOD-Paradigm design easy to implement. Some back-
ground on how this is important is provided by Booch as he quotes Britton and

Parnas:

The overall goal of the decomposition into modules is the reduction of
software cost by allowing modules to be designed and revised indepen-
dently ...Each modules’s structure should be simple enough that it can
be undesstood fully; it should be possible to change implementation of
other modules without knowledge of the implementation of other mod-
ules and without affecting the behavior of other modules: [and] the ease

of making a change in the design should bear a reasonable relationship
to the likelihood of the change being needed. [Booch, 1991:pp51]

Connections facilitate independent development and reuse by insulating the
objects from each other and from compilation dependencies. Objects and systems
become stand-alone; each can be developed independently. Connecting procedures
provide a “firewall:” changes to objects on one side of a connection do not affect the
objects on the other side. Objects do not have to conform to the entire system, only
to the specifications and interface of the point where they plug in. Connections also

provide a systematic way to handle data-type mismatches.

3.4.4 More Efficient Implementation. The OOD-Paradigm implemen-
tation should be efficient owing to the no-nesting policy and the use of connections
to move data directly between objects (see also the timing and sizing discussion in
Section 5.2.2). Following one of the design goals, nested objects were avoided in the
architecture. The layers in the hierarchy are logical layers. Because of this, objects
at the lowest levels in the hierarchy can be interfaced without passing data through
all the intermediate levels. This can lead to a more natural and efficient simulation

of the real world.

Three of the authors, Mr D’Ippolito, Mr Rissman, and Mr Stewart pointed
out their two-fold rationale for avoiding object nesting during a personal meeting

(paraphrased):

1. The real world is better reflected when nested objects are avoided.
For example if a fuel tank object is part of a wing object and needs to
be refueled, with nested objects you refuel the wing rather than the
fuel tank. Also, the engine system contains a burner which needs a
spark from the ignition system. With nested objects the spark would
be applied to the engine then passcd down o the burner. - uis is not
iike the real-world case where the burner gets the spark directly from
the ignition via wires (i.e. the connector in their implementation).

3-18

2. Design complexity and overhead is increased with nested objects.
The highest-level object becomes a choke point for data and invoke
calls.

Just because the analysis process produces a decomposition of objects
does not mean the implementation of these must be nested. The use of
a logical hierarchy as described in the OOD-Paradigm is an example of
a method which avoids nested objects. [Rissman and others, 1989¢]

The idea of avoiding object nesting runs contrary to de facto object-oriented
design: object nesting is a result of most object-oriented decompositions. Seide-
witz describes just this process as part of his General Object Oriented Development
(GOOD) method: higher-level objects are decomposed into lower-level objects and
implemented as nested objects [Seidewitz, 1989:pp101].

The OOD-Paradigm authors have carried the logical-hierarchy process a bit
farther than creating logical layers to implement analysis hierarchies. With the
de facto method of object decomposition, each decomposition may have a different
number of layers. Their method, however, utilizes standard levels with standard

names. Each decomposition looks remarkably like the next.

3.5 A Mapping Method from an OORA Method to a Design Following
OOD-Paradigm Principles

3.5.1 Background and Goals of the Mapping Method. The OOD-
Paradigm was developed to solve problems in the flight simulator domain, which
consists of time-driven problems. Although the mapping method presented pro-
duces designs based on the principles in the OOD-Paradigm, the problems used for
March’s analysis are event driven, and therefore fundamentally different. The map-
ping method produces a design with a very similar structure, but with a somewhat
different control sequence. All the advantages given in section 3.4 are evident in the

designs resulting from the mapping method (see analysis in Section 4.4).

An additional requirement for designs resulting from the mapping method
are that they satisfy the quality criteria presented by [Pressman, 1987:pp216]. To
summarize his criteria, we can say that a design should exhibit a hierarchical or-
ganization, consist of independent modules, be derived using a repeatable method
driven by information obtained during software requirements analysis, and contain

a distinct and separable representation of data and procedure.

The design resulting from the mapping method satisfies the above quality cri-

teria. It is a high-level design and is summarized by two diagrammatic tools:

1. The Hierarchical-Structure Diagram, which represents the hierarchical or

static structure of the design.

2. The Object-Event Interconnection Diagram, which represents the dy-

namics or “procedure” of the system.

These two diagrams represent Pressman’s criteria of distinct representations for
data and procedure. The mapping method for obtaining the two diagrams represent

Pressman’s criteria of a repeatable method.

3.5.2 Overview of the Mapping Method. The mapping method in-
volves two transformation steps and introduces four representation tools for con-

ducting the transformations. These tools are the following:

1. The Object-Mapping Table which maps analysis objects to implementation

objects and implementation parameters.

2. The Hierarchical-Structure Diagram which organizes the implementation
objects defined in the Object-Mapping Table into a hierarchical/static design
structure. This diagram represents “levels of abstraction” and “aggregation”
as discussed by [Booch, 1991:pp58-59], and is our equivalent to the “Over-
all Software Architecture” diagram (figure 3-5) of the OOD-Paradigm paper
(copied in Figure 3.1 of this document).

3-20

3. The Event-Mapping List which maps analysis events to the dynamic repre-

sentation of the design.

4. The Object-Event Interconnection Diagram which summarizes the in-
formation from the Event-Mapping List into a quickly understandable dia-
grammatic format. This is our equivalent to the “Turbofan Engine Object
Diagram” of the OOD-Paradigm (figure 4-2), which is copied as Figure 3.6 of

this document.

The first transformation step consists of the four substeps of transforming
the analysis requirements to the four representation tools listed above. The second
step transforms these four representations into Ada specifications. The second step
also includes defining design templates for object managers and overall design reuse
parameters. The first step is described in Sections 3.5.3 through 3.5.5, the second
step is described in Sections 3.5.6 through 3.5.8.

3.5.3 Map All Objects Using an Object-Mapping Table. The first
substep is to map analysis objects. Not all objects from the analysis will map to
implementation objects, many will become high-level parameters. Most of these
parameters will be used to represent attributes and states of the implementation

objects and will be passed as data values in messages between the objects.

Create the Object-Mapping Table as a tool to conduct and document the
mapping. List each object from the Organized Object List of the analysis into the
first column of the table. Form successive columns for implementation object,
attribute/state, and parameter. Mark an X in the appropriate column for each
object in the first column. For those objects mapped to anything besides the second
column (implementation object), indicate which implementation object this analysis

object is becoming a state/attribute of, or parameter between (see Table 3.1).

ANALYSIS IMPLEMENTATION | ATTRIBUTE/ | PARAMETER

OBJECTS OBJECTS STATE

Object Name 1 X

Object Name 2 X

Object Name 3 X

Object Name 4 X X
(Object Name 2)

Object Name 5 X X
(Object Name 2)

Object Name 6 X

Object Name 7 X X
(Object Name 6)

Object Name 8 X
(Object Name 6)

Object Name 9 X
(Object Name 6)

Object Name 10 X

Object Name 11 X X
(Object Name 6)

Object Name 12 X

(Object Name 6)

Table 3.1. Object-Mapping Table

3-22

3.5.3.1 Heuristics for Mapping Objects. Implementation objects
should usually represent real-world entities or procedural abstractions (those which
have a coordinating effect over many of the other objects). The Fzternal Interface
Diagram and some of the high level Concept Maps from the analysis can be helpful
in identifying implementation objects that represent the real-world entities. The
High-Level Actor Object Identification section can be helpful in identifying impor-
tant procedural abstractions. Analysis objects that interface directly to a hardware

component should become implementation objects.

Analysis objects that can be used to identify an instance of an implementation
object should be an attribute. Analysis objects that can identify a state of an
implementation object such as current location, direction of travel, altitude, etc.,
should be states. Analysis objects that do not represent attributes or states but can
be used to carry message information between objects, such as a hardware address,
a filename, a steering course value that needs to be made, etc.. should be marked as

parameters. Most states and attributes will also be parameters.

The bottom line for identifying implementation objects is to be aware that each
will either initiate events, respond to events, or both. A look at the Event/Responsc
List and the Message Senders and Recervers list will help identify these initiators

and responders.

3.5.4 Structural Representation: Organize the Objects into the
Hierarchical-Structure Diagram. Now that we have our objects identified, as-
semble them into a hierarchical diagram that reflects the structure of the problem.
This 1s the Hierarchical-Structure Diagram diagram and it is the first of two high-
level graphical representations of the design. This representation should reflect the

static decomposition of the problem, the data representation.

Ax our counterpart to the “Overall Software Architecture”™ (fignre 3-5) in the

OuD - Paradigm paper, the Hierarchical-Structure Diagram should follow the same

AGGREGATE

L

\j
AGGREGATE

AGGREGATE

P
-

EXECUTIVE

LEVEL

SYSTEM

LEVEL

OBJECT
(MANAGER)

LEVEL

Figure 3.10. Hierarchical-Structure Diagram

three levels: exeentive, system, and objeet.,

There is only one true level of objects in the diagram: the object level. Systems

are aggregates of objects) and executives are aggregates of systems. This design

therefore represents a “flat architecture” (Figure 3.10).

3.5.4.1 Heuristics For Mapping Requirements to the Hierar-

chical-Structure Diagram. 'The highest level coneept map from the analysis can

be helpful i identifying logical objects (aggregates) to become systems for the “sys

tem” level. Also the Qverall Organazed Prcliminary Object List contains hints for

deciding what poes under what i the decomposition. For example, in section A9

(page A 30), many object<an the Iist inclnde the note: “assoctated with cach eleva

329

tor.” Also the Structure Diagrams and Interface Diagrams in the Object Dictionary

can help in putting objects in the right place on the diagram.

The same principle that was used to identify implementation objects can also
be used to draw the Hierarchical-Structure Diagram. That is, follow real-world
analogies, model the solution after the real-world problem. This is a fundamental
object-oriented principle, as discussed in section 2.7.1, and should be used when

drawing this diagram.

3.5.5 Procedural Representation: Connect Objects with Events Us-
ing the Event-Mapping List and Object-Event Interconnection Diagram.
Following the example of the the OOD-Paradigm (and to some degree Kiem'’s Key-
stone method [Kiem, 1989:pp101]) messages between objects are passed via con-

nectors. No direct interfacing between objects will occur in the implementation.

The mapping method assumes an event-driven problem because this is the type
of problem analyzed in March’s thesis. Event-driven problems are also common
in embedded systems for which Ada was developed. In an event-driven problem,
cevents are mitiated within objects, usually reflecting the occurrence of an event in
the outside world. The object responds by sending messages to other objects. On
the other hand, in the time-driven OOD-Paradigm, events are initiated by a clock,

which invokes the connectors to transfer data between objects.

The mapping method uses an event-response model to develop the design for
event-driven problems. The event-response model is used for both identifying the
sequence of messages that need to be passed between objects and documenting the

responses that objects and connectors should take to events and messages.

3.5.5.1 Use an Event-Mapping List. The Event-Mapping List 1s
the tool used to map the Message Senders and Keeetvers list and the Fvent /Response

List to objects, connectors, and messages. Fach event is mapped to a connector and

the connector assumes the name of the event. The initiation of an event is mapped to
an object. Responses to events are also mapped to objects. At runtime, the initiator
invokes the connector when the event occurs, which in turn invokes the responder
objects (passing appropriate data of course). This implements the message-passing
process. During this mapping process, important parameters, variables, and types

are 1dentified.

The procedural design is determined during the Event-Mapping List process
and as such the completed Event-Mapping List constitutes one of the most impor-
tant parts of the top-level design. Implementation objects were identified using the
Object-Mapping Table; now the connectors, and interactions between connectors

and objects, will be identified.

During the process of event mapping, The Message Senders and Receivers list
should be used to identify the initiator and responder objects for each event. The
process consists of progressing through the events in the Message Senders and Re-
cetvers list (or Lvent-Response List) one-by-one, and describing the message passing
needed to accomplish each responses listed for each event. All responses must be
assigned to an object, or in some cases a small procedural response may be assigned

to the message-carrying connector.

If the initiator /responder is a system-level object in the analysis, then a deter-
mination must be made as to which object in that system the initiator/responder
actually i1s. If the answer is not apparent, review the Description of Messages Sent

and Received in the Object Encyclopedia for each object in this system.

Defining a message that needs to be passed between objects generally adds
a message to the connector currently being defined. Often, connectors will send
only one message. Responder objects may respond by becoming initiators of new
messages, indicating the need for an additional connector, or it may be found that

an already identified connector can be called.

Some responses should be assigned to the initiator of the event; so no message
passing will be necessary for that particular response. Record the response in the

list, later it will be assigned to the object manager of the object.

A possible enhancement, to introduce time-driven requirements into this event-

driven model, would be to create a time-keeping object to initiate events.

The Event-Mapping List should use a format similar to the following; it may

be important to enforce the format by putting it on a form:

e Events 1 & 2: Copy the number and name of the event from the list. Put all
copied requirements in italics so they can be easily identified as requirements

being mapped.

— Initiator : Object_Name Name of the object that initiates the event.

— Responses: Copy the list of responses from the Event/Response List and
describe how each requirement in each response is satisfied. Break up a
response into sublists if the response involves more than one requirement.
Fach response should be mapped either to a message that needs to be
passed or to a statement that the response will be conducted internal to

the initiator of the event. Example:

* 3a Read the floor number from the floor sensor input register. Ac-
complish internally to Floor_Sensor upon occurrence of event.

* 3b & 3c Fztinguish the light on the location panel for the elevator
for the previous floor. & Illuminate the light on the location panel for
the current floor.

- Connector needed: From Floor_Sensor to Location_Panel.
- Connector name: Floor_Approach.

- Location_Panel Command Needed: Update_Location_Indi-

cator.

- Parameters/Variables: New_Floor_Number, Elevator_Number.

— Maximum response time: 0.1 seconds.

Since the Event-Mapping List process creates an important part of the high-

level design, keep the following rules of thumb in mind:

Have objects send messages directly to responding objects (via connectors).

Objects do not interface directly to other objects, objects are not nested in ob-

jects, objects only interface to connectors, connectors only interface to objects.

Keep architecture flat. Remember there is only one true level of objects.

If an object is expected to perform one of the responses internally, and it was
not the initiator of the event, then be sure at least one of the connectors notifies

the object that the event occurred.

3.5.5.2 Object-Event Interconnection Diagram. The next step is
to represent the information from the Event-Mapping List in diagrammatic format
using the the Object-Event Interconnection Diagram. This diagram is the equivalent
of the “Object Diagram” (figure 4-2) of the OOD-Paradigm. It is equivalent in the
sense that it diagrammatically shows all objects, connections, and message passing
betwee them. Both can be transformed directly to Ada specifications (see also

Figure 3.11).

On the diagram, represent objects with Ada package icons and connectors with
roundtangles. The lines represent message passing. Line up the objects horizontally
across the middle of the diagram to represent the flat aichitecture. Because of this
flatness, “systems” and “executives” are not shown. Multiple instances of objects

within systems also are not shown since message passing is the same for each instance.

In the implementation, the connectors will have to reference both the system

level to access the instance of an object and the object level to access its operations.

3-28

message

CONNECTOR

message

message

CONNECTOR

OBJECTS

==

iCONNECTO%

CONNECTOH

2

message

y

ICONNBCTOR‘

Figure 3.11. Object-Event Interconnection Diagram

3-29

3.5.5.3 Sufficient or Complete Set of Object Operations. The
above mapping process results in a “sufficient” set of operations for this application
and for reuse at the design level. To implement the objects to be reusable in many
applications would require a “complete” set of operations [AFIT, 1990]. March de-
fined a much more extensive set of operations for each object in his analysis which, if
implemented with his set, would result in a near complete set of operations [March,
1989:ppA-35 ... A-88]. Berard points out that “completeness” is more than just op-
erations; he says we should also include exportable constants and exceptions {Berard,

1990b).
3.5.6 Mapping to Ada Specifications.

3.5.6.1 Ada Mapping Overview. Now that we have our four high-
level representations of the design, we'’re ready to map them to Ada specifications.
The Ada specifications map directly from the two diagrams. The components map

as follows:

e Objects. Each object defined at the object level of the Hierarchical-Structure
Diagram will map to an Ada “package,” which will be named < Object_Vame >
-Manager. Each object-manager package will contain a definition of the object
as a private type and the required operations on the object. A template will

be developed for instantiating object-manager packages (see section 3.5.7).

e Connectors. Each connector defined in the Event-Mapping List will map to
an Ada procedure named for the connector. Connector procedures may be

defined stand alone or may be grouped into a package for convenience.

o Systems. Each system kind defined in thc Hierarchical-Structure Diagram
will map to a package named < System_Name > _System_Aggregate. These
packages will contain a data structure that contains instances of the objects

making up the systemn. Identification of these objects for grouping into the

3-30

system aggregate package also comes from the Hierarchical-Structure Diagram.
The data structure contains an additional dimension so that more than one
instance of a system can exist in the package; that is, only one system-aggregate
package is needed for each kind of system, regardless of the number of these

systems that will be used.

e Executives. In a similar way to systems, each executive kind from the
Hierarchical-Structure Diagram will map to a package called

< Ezrecutive_Name > _Ezxecutive_Aggregate.

e Parameters. Most of the parameters, variab « :,; and types defined during
object and event mapping, which are used 11 conjunction with more than one
object, will be defined as types in the Standard_Engineering Types package.
This package also contains the information needed to instantiate the design

(see Sections 3.5.8, A.1, and B.1).

3.5.6.2 Ada Mapping Products. The results of the Ada mapping

process will be the following:

e Complete Object_Manager package specifications. The object itself
should be defined as a private type. This private type should be an access
type which points to an instance of the representation of the object. The
representation generally will be either a record or a task type. Task types
are used if the object is one that will accept hardware interrupts. In either
case, objects will contain unique state and configuration information for each

Instatice.

o Complete System_Aggregate Package Specifications and Bodies. The
body of this package exists only to initialize the data structure containing

instances of the system objects.

3-31

Executive aggregate packages will exist if more than one executive exits. Mul-
tiple executives generally will be defined in larger systems or systems that will

be multi-processed.
e Complete Connector Procedures. Not just procedure specifications.

e Complete Standard_Engineering Types Package. Like the aggregate
packages, the types package may include a package body for initializing data

into a data structure.

e Elaboration Order Where Appropriate. For example, the system-aggregate
packages will be calling the object managers from the package body-initialization
section to initialize their data structures, so the object managers will need to

be elaborated before the system-aggregate packages.

3.5.6.3 Information Mapping. The Hierarchical-Structure Diagram
provides the information needed to build the static structure of the software. This
is done by defining the objects as object managers, the systems as system aggregate
packages, and executives as executive aggregate packages, and the corresponding

groupings for each.

The Object-Event Interconnection Diagram supplemented with the Event-
Mapping List, provides the information needed to identify the operations each object
manager should export, the identity of the connector procedures, the connectors each
object manager will need visibility to from the package body (using “with” clauses),
the object managers each connector will need visibility to, and the identity of nec-

essary messages with corresponding parameters.

The Object-Mapping Table identifies the parameters that will need to be de-
fined as types in the Standard_Engineering_Types package.

All the information from the analysis should be on hand as supplement in-

formation during the Ada mapping process. For example, the Mectarequirements

section of the analysis will be needed to define the configuration parts of the Stan-

dard_Engineering_Types package (see Sections 3.5.8, A.1, and B.1).

3.5.6.4 Ada Mapping Process. The process of defining the Ada
specifications is to walk through the Event-Mapping List using the Object-Event
Interconnection Diagram as a guide. The diagram identifies object managers and
their operations, connector procedures, and the “with”ing between them. Use the
List to be sure the definitions of the objects and connectors are complete in the sense
that all the requirements represented in the List are mapped to Ada specifications.

Check-off items in the List as they are mapped.

Create new instances of the object managers at the first reference to them in the
List (see object manager template discussion Section 3.5.7 and example Sections A.2,
A.3 and B.2). The “with” list at the top of each object manager can be derived from
the arrows on the diagram; arrows point to “with”ed components. Fill these in,
though later some should be moved to the package body if visibility to the “with”ed
component is not needed at the specification level. Object managers usually should
“with” only the Standard_Engineering.Types package from the specification part,

connectors should be “with”ed from the package body.

3.5.6.5 Document Mapped Requirements in Ada Specifica-
tions. The requirements mapped to each object should be documented in the pack-
age specification in a consistent and structured format. This format should be for-

mally defined in the object templates as discussed in the next section.

3.5.7 Develop Templates for Instantiating Object Managers. Ulti-
mately, defining the object packages will become a process of filling in the blanks of
an object template. The rationale for using templates is discussed in Sections 3.3 and
and 3.4. Examples from the elevator problem of an object-manager template and

instantiated object-manager templates are in appendix Sections A.2, A.3, and B.2.

3-33

The basic principle is to generalize existing Object Managers to realize the template
and then use the template for instantiating further object managers [Plinta and Lee,

1989:pp66]. Use the guidelines in the following sections for defining templates:

3.5.7.1 Look for the Reoccurring Pattern of Object Managers.
This concept is best explained through contrasting examples: In the OOD-Paradigm
for Flight Simulators, they call their model the “Object Connection and Update
Model” because they’re modeling a system of objects that are updated at specific
time intervals (time driven) [Rissman and others, 1988:pp4]. On each time interval,
the connectors are invoked and they read the state from one object and pass it to
another. With this pattern in mind, they defined the reoccurring operations of the

object managers to be ones that get state from an object and give state to an object.

Event-driven problems lead to a stimulus/response kind of object operation.
Therefore the reoccurring operations are defined to be Applying a Stimulus and
Responding to a Stimulus. Since the example applications are embedded systems,
stimuli may come from either exported operations or hardware interrupts. Responses
are either internal state changes, hardware commands, or message sending. All
stimuli and corresponding responses should be systematically documented in the

object-manager package specifications (see examples in the appendices).

Because abstract data types are used to implement objects, a consistent mech-
anism for issuing new instances of the object is needed. For this purpose, each
object manager will export a function named: New_ < Object >. This operation
will initialize the object with state and configuration data obtained from the Stan-
dard_Engineering Types package as appropriate. This operation will be called by

the aggregate package during elaboration, in order to initialize each “system.”

3.5.7.2 Develop A Standard Format For the Object Managers.

The standard format for the template should contain exported operation temglates,

3-34

abstract data type templates, documentation templates, etc. The places where

names are needed to instantiate the templates should be enclosed in brackets < ... >.

The documentation template is important for the purpose of completing the
requirements trace. It should be structured to promote a clear understanding of the
nature of the object’s operation (stimulus/response in the case of our examples). Re-
quirements from the Event-Mapping List (and other earlier listed sources, as needed,
such as the Object Dictionary) should be copied or paraphrased systematically to
the documentation template, along with how each requirement is satisfied by the
package. The implementor of the object manager should be able to properly imple-
ment the package body from the documentation in the package specification and the

information in the Standard_Engineering Types package.

3.5.7.3 Identify The “Generic” Parts. These generic parts are
templates needing to be filled in with instantiation parameters. The most fundamen-
tal of these parameters are the < Object_Name > and the < System_Name >. The
generic parts include exported-operation templates, “with”ing templates, object-

representation templates in the private part, etc (see Section A.2 for an example).

To avoid confusion, compare the two kinds of “generics,” for which instances
are created, involved in this discussion of object managers (but neither includes the
using of Ada generics): The object-manager templates are used to instantiate new
object-manager packages during the current design process. The objects defined
in the object managers are abstract data types from which multiple instances are

created during run time; these are kept in a System Aggregate package.

3.5.7.4 Template Instanciation. The object templates are “instan-
tiated” by replacing all generic information with the particular information for the
object. Names are instantiated by using the global “find & replace” function of an
editor for each generic parameter. For example, the first find and replace will be to

replace the string “< Object > for the actual object name.

3-35

Instantiating the documentation part of the template is very important for
tracing requirements, as mentioned, because this is where mapping of requirements

to Ada code is documented (see the object-manager examples in the appendices).

3.5.8 Develop the Standard_Engineering_Types package for Instan-

tiating the Design. This package serves two purposes:

1. It contains type definitions for the parameters defined during object 2ad event

mapping. These are defined in the areas marked “PARAMETER AREA #X.:.”

o

It configures the design for reuse. The areas marked: “CONFIGURATION
AREA #X.” contain data used to instantiate the design. See the example in
Section A.1l.

Adjusting the configuration values in the Standard_Engineering. Types package
is the most direct way of reusing the design (See Section 3.4 for a discussion of other
levels of reuse). The elevator problem example package contains 21 configurable
values, including the number of elevators controlled, number of floors in the build-
ing, the weight capacity of each elevator, hardware address, hardware commands,
and hardware interrupt vectors. This package can be thought of as a template for

instantiating the design implementation.

The source of information needed to decide what parameters should be made
generics in the configuration area of the Standard_Engineering_ Types package should
come from a domain analysis. Information needed to instantiate these parameters

can be found in the Metarequirements and Object Dictionary sections of the analysis.

3.5.9 Cross Check Transformations as a Tracing Step. Both trans-
formation steps should be cross checked. First reread the analysis and verify that
all the requirements are mapped into at least one of the four representation tools.

Then walk through the four tools and verify that each item is mapped to the Ada

3-36

specifications. The most important parts of the analysis to cross check are the

Event/Response List and the Metarequirements section.

3-37

1V. Validation of the Mapping Method

4.1 Introduction

The mapping method presented in Chapter IlI can be validated by applying
it to two sample problems and comparing the results. One goal is that the resulting
designs for the two problems would be very similar. In the problem statement of
this thesis (Chapter I), we stated that one of the main problems with current design
methods was their tendency to create unique solutions, which greatly reduced the
potential for design reuse. A method that develops consistent designs is a large step

toward design reuse.

Other goals for the resulting designs are that they would exhibit the benefits
of Section 3.4 and would be able to be instantiated within at least some limited

domain.

This chapter applies the mapping method to the two problems analyzed by
March in his thesis [March, 1989:pp3-18 ...3-39, A-1 ... A-89]; these are the Eleva-
tor Controller and Cruise Control problems. This chapter contains the first trans-
formation step for both problems, that is, transformation to the four representation
tools listed in Section 3.5.2. The second transformation step, to Ada specifications,
is included as the first two appendices. As an additional validation step, the elevator

design is implemented and the results are discussed at the end of the chapter.

4.2 The Elevator Problem.

4.2.1 Important Products from March’s Analysis. The two items
from March’s analysis most needed by the mapping method are the Organized Pre-
liminary Object List and the Message Senders and Receivers list. They are copied

in the next two sections for convenience:

4.2.1.1 Organized Preliminary Object List.

11

Elevator Control System
Elevator

Elevator 1

Elevator 2

Elevator 3

Elevator 4
Direction

(Associated with each elevator.)
Floor Sensor

(Associated with each elevator.)
Elevator ID

(Associated with each elevator.)
Elevator Motor

(Associated with each elevator.)
Weight Sensor

(Associated with each elevator.)
Weight

Current Weight (Associated with each elevator.)
Load Capacity (Associated with each elevator.)

Control Panel
Elevator Control Panel (Associated with each elevator.)
UP Request Panel
DOWN Request Panel
Location Panel
(Associated with each elevator.)

List

Destination List (Associated with each elevator.)
Outstanding Request List

Floor
Summons Request
Input Register
Elevator Control Panel Input Register (1 for each elevator)
UP Request Panel Input Register
DOWK Request Panel Input Register
Floor Sensor Input Register (1 for each elevator)
Dutput Register
Elevator Control Panel Output Register (1 for each elevator)
UP Request Panel Output Register
DOWN Request Panel Output Register
Location Panel Output Register (1 for each elevator)
Address
(Associated with each input or output register.)

Interrupt Number

(Associated with each control panel and floor sensor.)

4-3

Eventl

Resp.la:
R1b:
Rlc:

R1d:

E2:

E3:

R3a:

4.2.1.2 Message Senders and Receivers.

A passenger issues an “up” summons from a particnlar floor (inter-
rupt).
Sender: UP Request Panel Receiver: Elevator Control System

Read the Up Summons input register to determine the floor number
of the request. (Performed by UP Request Panel)

[lluminate the light behind the button on the UP summons request
panel. (Performed by UP Request Panel)

If there is an idle (parked) elevator, send it to the floor where the
summons was issued. (Performed by Elevator Control System)

Add the request to the list of outstanding requests. (Performed by
Elevator Control System)

A passenger issues a “down” summons from a particular floor (in-
terrupt).

Sender: DOWN Request Panel

Receiver: Elevator Control System

: Read the DOWN Summons input register to determine the floor

number of the request. (Performed by DOWN Request Panel)

: Illuminate the light behind the button on the DOWN summons

request panel. (Performed by DOWN Request Panel)

: If there i1s an idle (parked) elevator, send it to the floor where the

summons was 1ssued. (Performed by Elevator Control System)

: Add the request to the list of outstanding requests. (Performed by

Elevator Control System)

A sensor for an elevator signals its arrival at a particular floor (in-
terrupt).

Sender: Elevator Floor Sensor

Receiver: Elevator

Forwarded To: Elevator Control System

Read the floor number from the floor sensor input register for that
elevator. (Performed by Floor Sensor)

4-4

R3b:

R3c:

R3d:

R3e:

Ed:

R4a:

Rab:

Rdc:

R5a:

R5b:

E6:

Extinguish the light on the location panel for the elevator for the
previous floor. (Performed by Elevator)

[lluminate the light on the location panel for the current floor. (Per-
formed by Elevator)

If the floor is listed in the destination list for the elevator, tnen stop
the elevator at the floor and extinguish the light behind the floor
number on the elevator’s control panel. After stopping, remove the
floor from the destination list, wait 3 seconds, then proceed to the
next destination. (Performed by Elevator)

If the floor and direction are listed in the outstanding request list,
then stop the elevator at the floor. Extinguish the light behind the
floor button on the proper request panel, and remove the summons
request from the outstanding request list. After stopping, wait 3
seconds, then proceed to the next destination. (Performed by Ele-
vator Contro} System)

A passenger presses a destination button on the coutrol panel of a
particular elevator (interrupt).

Sender: Elevator Control Panel

Receiver: Elevator

Read the control panel input register to determine the desired floor
number. (Performed by Control Panel)

Illuminate the light behind the button on the control panel for the
elevator. (Performed by Control Panel)

Add the floor to the destination list for the elevator. (Performed by
Elevator)

5: An elevator becomes overloaded.

Inquiry Sender: Elevator
Inquiry Receiver: Weight Sensor

Disable the elevator so that it does not move vntil the overload

condition is gone. (Performed by Elevator)

Periodically (approximately every 5.0 seconds) check to see if the
overload is eliminated. (Performed by Elevator)

Time to check elevator weight sensor (periodic).

4-5

R6: If current weight is less than max load. then respond to commands.
Otherwise, delay another 5 seconds and check the weight sensor
again. (Performed by Elevator)

4.2.2 Elevator Object-Mapping Table. This section maps the analysis
objects from the elevator problem to implementation objects. The list of analysis

objects is included as Section 4.2.1.1.

Following the heuristics of Section 3.5.3.1, of the 17 analysis objects (20 if each
elevator is counted as a separate object), 7 are mapped to implementation objects
(Table 4.1). For this embedded system. object identification follows real-world analo-
gies. One procedural abstraction is also identified as an object - the Elevator Control
System, which we call the Scheduler. Most of the other objects become attributes,
states, and parameters. Input and Ouiput Register become address parameters. The
analysis object Summons Request was 1dentified as an event so it is not mapped as

an implementation object.

4.2.3 Elevator Hierarchical-Structure Diagram. Now that we have our
mmplementation objects identified, we are ready to group them into their natural
hierarchy as described in Section 3.5.4.1. The objective is to group the objects
into systems and, if needed, executives. The elevator-control system is not complex
enough to be decomposed into multiple executives, so no executive will exist (except
perhaps as a null procedure for the purpose of linking and initial invocation), but
it does decompose into three systems: the Floor_Panels, Elevators, and Scheduler.
Although the elevator was 1dentified as an object in the Object-Mapping Table, here
we recognize that the elevator is not an object but an aggregate of objects. The

Scheduler and Floor_Panels systems each consist of one kind of object (Figure 4.1).

Among the heuristics used to draw the Hierarchical-Structure Diagram are
real-world analogies and Figure A.22 from the analysis - Elevator Control System

External Interface Diagram.

4-6

ANALYSIS IMPLEMENTATION | ATTRIBUTE/ | PARAMETER

OBJECTS OBJECTS STATE

Elevator Controller X

System (Scheduler)

Elevator X

Direction X X
(Elevator)

Floor Sensor X

Elevator 1D X X
(Elevator)

Elevator Motor X

Weight Sensor X

Weight X X
(Elevator)

Control Panel X

Location Panel X

List Internal to

Scheduler
Floor X X
(Elevator, others)

Summons Request Event

Address X

Input Register (Address) X

OutPut Register (Address)

Wlnterrupt Number X

Table 4.1. Elevator Object-Mapping Table

4-7

(NONE FOR EXECUTIVE
] ELEVATOR)

LEVEL

FLOO SCHEDULER
PANELS ELEVATORS
AGGREGATE AGGREGATE AGGREGATE
SYSTEM
LEVEL
=
FLOOR LOCATION FLOOR WEIGHT CONTRO;\\\\
PANELS PANEL SENSOR SENSOR PANEL MOTOR SCHEDULER
OBJECT
(MANAGER)
| L 1
h T r T LEVEL

Figure 4.1. Elevator Hierarchical-Structure Diagram

4-8

4.2.4 Elevator Event-Mapping List. We are now ready to develop the
Event-Mapping List as described in Section 3.5.5.1. The mapping follows the Mes-
sage Senders and Receivers list, which was included as Section 4.2.1.2. For this prob-
lem, March faithfully reproduced the events and responses in the Message Senders
and Receivers list; therefore, all that is needed from the event/response list is maxi-

mum response times.

Events 1 and 2 were combined since they are the same event, differing only in

the value of the parameter: “Direction.” The Event-Mapping List follows:

e Events 1 & 2: A passenger issues an “up”/“down” summons from a particular

floor (interrupt).

— Initiator: Floor_Panel.
— Responses as follows:

*+ Rla & R2a: Read input register to determine floor number of re-

quest. Accomplish internally to Floor_Panel upon occurrence of event.

* R1b & R2b: llluminate the light behind the button on the Up Sum-
mons request punel. Accomplish internally to Floor_Panel upon oc-

currence of event.

* Rlc & R2c: If there is a an idle (parked) elevator, send it to the

floor where the summons was issued.
- Connector needed: From Scheduler to Motor.
- Connector Name: Proceed.
- Motor Command needed: Go.
- Parameters/Variables: Elevator_Number, Floor, Direction.
* R1d & R2d: Add the requests to the list of outstanding requests.
- Connector needed: From Floor_Panel to Scheduler.

- Connector Name: Summons.

4-9

- Scheduler Command Needed: New_Summons.
- Parameters/Variables: Floor, Direction.
- Connector Processing: Call New_Summons with the parame-

ters.

— Average response time: 20 seconds for elevator to arrive.

e Event 3: A sensor for an elevator signals its arrival at a particular floor.

— Initiator: Floor_Sensor.
— Responses as follows:

* R3a: Read the floor number from the floor sensor input register.
Accomplish internally to Floor_Sensor upon occurrence of event.

* R3b & R3c: FEztinguish the light on the location panel for the eleva-
tor for the previous floor. & Illuminate the light on the location panel
for the current floor.

- Connector needed: From Floor_Sensor to Location_Panel.

- Connector name: Floor_Approach.

- Location_Panel Command Needed: Update_Location_Indi-
cator.

- Parameters/Variables: New_Floor_Number, Elevator_Number.

* R3d: If the floor is listed in the destination list for the elevator, then

stop the elevator at the floor and extinguish the light behind the floor

number on the elevator’s control panel. After stopping, remove the

floor from the destination list, wail 3 seconds, then proceed to the

next destination.

* R3e: If the floor and direction are listed in the outstanding request

list, then stop the elevator, at the floor. Fztinguish the light behind

4-10

the floor button on the proper request panel, and remove the sum-
mons request from the outstanding request list. After stopping, wait

3 seconds, then proceed to the nezt destination.

Combine R3d and R3¢ and then break up as follows:

* R3di: if the floor is listed in the destinution/direciion list for the
elevator then.
- Connector needed: Floor_Sensor to Scheduler.
- Connector name: Floor.Approach.
- Scheduler Command Needed: Floor.Approaching.

.- Parameters/Variables: Elevator Number, Floor_Number, Di-

rection.
*x R3dii: stop the elevator at the floor.
- Connector needed: From Scheduler to Motor.
- Connector n: me: Arrives.
- Motor Command Needed: Stop.
- Parameters/Variables: Elevator_Number.

* R3diil: extinguish the light behind the floor number on the elevators

control panel.
- Connector needed: Scheduler to Control_Panel.
- Connector name: Arrives.
- Control_Panel Command Needed: Button_Light_Out.
- Parameters/Variables: Elevator_Number, Floor_Number.

* R3ei: extinguish the light behind the floor number on the floor panel

for this direction and floor.
. Connector needed: Scheduler to Floor_Panel.

- Connector name: Arrives.

- Floor_Panel Command Needed: Light_Out.
- Parameters/Variables: Floor_Number, Direction.

* R3div: After stopping, remove the floor from the destination list.
Done internally by Scheduler.

* R3dv: Also after stopping, wait 8 seconds, then proceed to the nezt

destination.
- Connector needed: From Scheduler to Motor.
- Connector name: Proceed.
- Motor Command Needed: Go.

- Parameters/Variables: Elevator_Number, Direction.

~— Maximum response time: 0.1 seconds.

e Event 4: A passenger presses a destination button on the control panel of an

elevator.

— Initiator: Control_Panel.
— Responses as follows:
* R4a: Read the Control Panel input register to determine the desired
floor number. Done internally by Control_Panel.

* Rd4b: [lluminate the light behind *he button on the Control Panel for

the elevator. Done internally by Control_Panel.
* Rdc: Add the floor to the destination list for the elcvator.
- Connector needed: From Control_Panel to Scheduler.
- Connector name: Destination_Rzquested.
- Scheduler Command Needed: Destination Requested.
- Parameters/Variables: Elevator_Number, Floor_Number.

* R4z: (added) if the Elevator is idle then dispatch it toward the floor

selected.

4-12

- Connector needed: From Scheduler to Motor.

- Connector name: Proceed.
- Motor Command Needed: Go.

- Parameters/Variables: Elevator_Number, Direction.

— Maximum response time: 0.1 seconds.

o Events 5 & 6: An elevator becomes overloaded.

— Initiator: Weight _Sensor.
— Responses as follows:

*+ R5a & R6: Disable the elevator so that it does not move until
the overload condition is gone. Make this job part of the function
of the Proceed connector (event). Before calling Go of Motor the
Weight _Sensor should be called to verify that the elevator is not over-

weight. Proceed is initiated by the Scheduler.

+ R5b & R6: Periodically (approzimately every 5.0 seconds) check
to see if the overload is eliminated. Also, make this job part of the
function of the Proceed connector. If the elevator was found to be
overweight, then repeatedly call the Weight_Sensor (every 5 seconds)
to see if the weight has changed to below the maximum. If it has
then the Proceed connector can go ahead and call the corresponding

Motor to Go.

- Maximum response time: 0.1 seconds.

4.2.5 Elevator Object-Event Interconnection Diagram. With the com-
pleted Event-Mapping List for the Elevator problem, the Object-Event Interconnec-
tion Diagram can now be directly drawn as described in Section 3.5.5.2. Arcs from
connectors to responding cbjects are labeled with command or data names to nake

the diagram more independently descriptive.

4-13

elevator,
floor

ARRIVES

light
out

LOCATION FLOOR WEIGHT
PANEL SENSOR SENSOR

=

CONTROL
MOTOR N pANEL SCHEDULER

PANELS

l) cC 1l
p—
elevatpr,
g0 floor

ESTINATIO
REQUESTED

liiii%%iii
SUMMONS

floor,
irection

Figure 4.2. Elevator Object-Event Interconnection Diagram

4-14

4.2.6 Mapping to Ada Specifications. Now with the first transformation
step of the mapping method complete for the Elevator problem, the second step can
be accomplished: mapping the results of the first step to Ada specifications following
the guidance of Section 3.5.6. The result is included as Appendix A.

The specifications are presented in the order they were written. This order
approximates dependency order (which is defined by the diagrams and the “with”
clauses in the code). Depended upon components were written before dependent
components. Standard_Engineering_Types was written first, then the hierarchy de-
fined by the Hierarchical-Structure diagram was established by writing the object
managers and system aggregate packages. The procedural representation was then
established by writing the connectors. The object managers and connectors were

written directly from the Object-Event Interconnection diagram.

The Object Manager Template was written after the first few object manager
packages as described in Section 3.5.7. These first few Object Managers were writ-
ten as prototypes and then generalized to define the template (as was done by the
Granite Sentry project discussed in Section 2.6.3). The template was then used to
instantiate the other object managers both for this problem and the Cruise Con-
trol Problem. See the documentation sections of the Ada specifications for details.
The documentation section of the Standard_Engineering_Types package describes
the configuration parameters that must be modified to instantiate the design for

other applications within the domain (elevator controllers in this case).

This step completes the design of the Elevator problem. The only code re-

maining to be written by the implementor is the object manager package bodies.

4.3 The Cruise Control Problem

The mapping method will now be applied to the other problem analyzed by
March in Chapter I11 of his thesis: The Cruise Control problem.

4.3.1 Important Products from March’s Analysis. The analysis items
most needed by the mapping method are the Organized Preliminary Object List,
and Message Senders and Receivers list, and for this problem we also need the
Event/Rcsponse List since March didn’t copy all the responses to the Message
Senders and Receivers list this time. The corresponding analysis sections are copied

in the next three sections for conventence:

4.3.1.1 Cruise Control Event/Response List.

Eventl: The on button is pressed.

Resp.1: The cruise control system is activated.

Maximum response time: 0.5 seconds.

E2: Set speed button is pressed.
R2a: Cruise control system is engaged.

R2b: Set the desired speed equal to the current speed.

Maximum response time: 0.25 seconds.

E3: Time to update the throttle position (periodic).
R3: If engaged, then set the throttle based on the current speed vs. the
desired speed.

Projected event rate: 10 / second.

E4: Brake is pressed.

R4: Cruise control system is disengaged.

Maximum response time: 0.1 seconds.

E5: Resume button is pressed.

4-16

R5:

E6:
R6:

E7:
R7a:
R7b:

Cruise control is engaged.

Maximum response time: 0.25 seconds.

Accelerate button is pushed.

Increment desired speed.

Maximum response time: 0.25 seconds.

The off button is pressed.
Throttle control is disengaged.

Cruise control is deactivated.

Maximum response time: 0.1 seconds.

4.3.1.2 Cruise Control Preliminary Object List.

Cruise Control

Throttle control

Speed

Current Speed

Desired Speed

Button

Set Button
On Button

0ff Button
Resume Button

Accelerate Button

4-17

Timer

/ Events.

Eventl:

E2:

R2a:
R2b:

E3:

E4:

E6:

ET:

R7a:
R7b:

4.3.1.3 Cruise Control Senders and Receivers of the Messages

The on button is pressed.
Sender: On Button
Receiver: Cruise Control

Set speed button is pressed.
Sender: Set Button
Receiver: Cruise Control

Cruise control system is engaged. (Performed by Cruise Control)

Set the desired speed equal to the current speed. (Performed by
Cruise Control)

Time to update the throttle position (periodic).
Sender: Timer
Receiver: Cruise Control

Brake is pressed.
Sender: Brake
Receiver: Cruise Control

: Resume button is pressed.

Sender: Resume Button
Receiver: Cruise Control

Accelerate button is pushed.
Sender: Accelerate Button
Receiver: Cruise Control

The off button is pressed.
Sender: Off Button

Receiver: Cruise Control
Throttle control is disengaged. (Ferformed by Cruise Control)

Cruise control is deactivated. (Performed by Cruise Control)

4-18

4.3.2 Completion of Cruise Control Hardware Interface Require-
ments. The Cruise Control Analysis is sufficiently complete to use the mapping
method except in the area of the hardware interface. Hardware interfacing informa-
tion is needed for the Standard_Engineering_Types package. This information will
be needed by the implementor of the object manager package bodies and for instan-
tiating the design implementation for different hardware. The hardware interface
information should be in the Metaresuirements part of the analysis as it was for the

elevator problem.

To demonstrate the use of the mapping method on this problem, the analysis
in this area is expanded by assuming that the hardware interface works in a similar

way as the elevator problem, with the foilowing added details:

1. Each button has an associated interrupt (including the brake®, so each “but-
ton push” generates its associated interrupt. No registers must be read in

association with the interrupts. The interrupt numbers are as follows:

Set : 164#B1#
On . 16#B2#
Off : 16#B3#
Resume : 16#B4+#
Accelerate : 16#B5#
Brake : 16#B6#

2. The Speed Sensor hardware has one 8-bit register. Its address is 16#A1#.
The Speed Sensor hardware maintains the speed of the vehicle in this register.
The speed is a hex integer and is maintained in units of miles-per-hour. The
Speed Sensor software object need only read this register to get the speed

value.

4-19

3. The Throttle Control hardware has one 8-bit register. Its address is 164 A2#.
The throttle control hardware reads this register periodically to get commands.
The throttle control hardware has two states: “holding” and “release.” It in-

terprets commands as follows:

o Set: 16#10# — Hold the current throttle setting and put the hardware in

the “holding” state. This command is accepted in both hardware states.

o Speed Adjustment: Commands to change the throttle setting. The
hardware reads these commands only when in the “holding” state.
A value of 16#FF# tells the hardware to continue holding the current
throttle setting. Integer values of one to ten tell it to change the throttle
by various amounts: one is the smallest amount and ten is the largest. A
zero in the high-order bit means the change will be a deceleration, a one
indicates an acceleration. While in the active state, if any value is read
other than those listed below, the throttle control releases the throttle

and returns to the release state.

The actual command values are as follows:

No change: 16#FF#
— Decelerate Increment 1: 164014

— Decelerate Increment 2: 164#02#

Decelerate Increment 3: 164#03#
— Decelerate Increment 4: 16#04+#

— Decelerate Increment 5: 16#05#

|

Decelerate Increment 6: 16406#

Decelerate Increment 7: 16407#

Decelerate Increment 8: 164#08#

Decelerate Increment 9: 16#09+#

Decelerate Increment 10: 16#0A#

4-20

—~ Accelerate Increment 1: 16#81#
— Accelerate Increment 2: 164#82#
~ Accelerate Increment 3: 16#83#
— Accelerate Increment 4: 164844
— Accelerate Increment 5: 16#85#
—~ Accelerate Increment 6: 16#86#
~ Accelerate Increment 7: 16#87#

— Accelerate Increment 8: 164884

Accelerate Increment 9: 164894

!

Accelerate Increment 10: 164#8A#

4.3.3 Cruise Control Object-Mapping Table. This section maps the
analysis objects from the Cruise Control problem to implementation objects. The

list of analysis objects is in sSection 4.3.1.2.

Following the heuristics of Section 3.5.3.1, of the 13 analysis objects, 5 are
mapped to implementation objects (Table 4.2). For this embedded system, object
identificativn follows real-world analogies. All the buttons, including the brake, will
be handled by one object called Button. The “Cruise Control” object will be mapped
to the “system” level in the next section and therefore is not a true object in the

sense of our mapping method.

A place to maintain system states is needed, because all the objects map to
hardware interfaces. In the elevator problem, the Scheduler object had sufficient
information to maintain any states it needed. For this problem, however, states
such as the speed that the Cruise Control is maintaining, and whether it is currently
engaged or not, needs to be commonly available. For this reason we add an additional

object called System States.

4-21

ANALYSIS IMPLEMENTATION | ATTRIBUTE/ | PARAMETER

OBJECTS OBJECTS STATE

Cruise Control X

Throttle Control X

Speed Sensor X

Current Speed X X

(Speed Sensor)
Desired Speed X X
(Speed Sensor)

Button X

On Button X X
(Button)

Off Button X X
(Button)

Accelerate Button X X
(Button)

Set Button X X
(Button)

Resume Button X X
(Button)

Brake Pedel X X
(Button)

Timer X

System_States

Table 4.2. Cruise Control Object-Mapping Table

4-22

4.3.4 Cruise Control Hierarchical-Structure Diagram. The imple-
mentation objects are now identified and are ready to be grouped into their nat-
ural hierarchy as described in Section 3.5.4.1. The objective is to group the objects
into systems and, if needed, executives. The Cruise Control system is not complex
enough to be decomposed into multiple executives, so no executive will exist (except

perhaps as a null procedure for the purpose of linking and initial invocation).

Recognize here that the Cruise Control object it not really an object but an
aggregate of objects. It is, in fact, an aggregate of all the other objects. This
small application therefore maps to one “system” that is called the “Cruise Control

System”(Aggregate).

Real-world analogies and Figure 3.9 from the analysis - Cruise Control Sys-
tem External Interface Diagram - are among the heuristics used in drawing the

Hierarchical-Structure Diagram.

4.3.5 Cruise Control Event-Mapping List. The next step is to develop
the Event-Mapping List as described in Section 3.5.5.1. The mapping follows the
Event/Response List and Message Senders and Receivers list, which are included as
Sections 4.3.1.1 and 4.3.1.3. We are mainly following the Event/Response list of the
analysis because the events were not reproduced in the Senders and Receivers list.

In this problem the mapping creates exactly one connector for each event.

Because procedural objects do not occur in this problem, the connector for
event 3 (“Update”) does more than just pass messages. It does the work of coordi-
nating the throttle and the speed when the “time to update throttle” event initiates

from the timer object.

Mapping List:

e Event 1 : The on button is pressed.

— Initiator: Buttons.

4-23

(NONE FOR EXECUTIVE
] CRUISE CONTROL) LEVEL

CRUISE CONTROL

AGGREGATE
SYSTEM
LEVEL
O
THROTTLE SPEED SYSTEM
CONTROL SENSOR STATES BUTTONS TIMER

¢ OBJECT
é— (MANAGER)
LEVEL

Figure 4.3. Cruise Control Hierarchical-Structure Diagram

4-24

- Responses: as follows:

* R1: The Cruise Control System is activated.
- Connector needed: From Buttons to System States.
- Connector name: Turn_On.
- Parameters/Variables: None.

- System_States Command Needed: Apply_On (sets a boolean

indicating the Cruise Control is turned on).

- Connector Processing: Invoke Apply_On.

— Maximum response time: 0.5 seconds.
o Event 2: Set speed button is pressed.

— Initiator: Buttons.
— Responses as follows:

* R2a: Cruise Control System is engaged
. Connector needed: From Buttons to System_States.
- Connector name: Set_Speed.

- System_States Command Needed: Return_On (returns the
state of the “on” boolean), Apply_Engaged (sets a boolean indi-

cating that the Cruise Control is engaged).
. Connector Processing: Invoke Return_On; if true invoke Ap-
ply Engaged.
- Parameters/Variables: None.
x R2b: Set the desired speed equal to the current speed.

- Connector needed: From Buttons to Speed_Sensor,

System _States, and Throttle_Controller.

- Connector name: Set_Speed.

- Speed_Sensor Command Needed: Return_Speed (returns the

current speed).

- Throttle_Controlier Command Needed: Set (tells the throt-

tle_controller to hold at the curreat setting).

- System_States Com. - :nd Needed: Apply Desired Speed (loads

a variable maintaining the desired speed).

- Connector Processing: Invoke Set, Invoke Return_Speed in
Speed_Sensor and then invoke Apply Desired Speed with the speed

value.

- Parameters/Variables: Current_Speed.

— Maximum response time: 0.25 seconds.
e Event 3: Time to Update the throltle position (periodic).

— Initiator: Timer.
— Responses as follows:
* R3: If engaged, then set the throttle based on the current speed vs.
the desired speed.

Connector needed: From Timer to Speed_Sensor, Systemn States,
and Throttle_Controller.

- Connector name: Update.

- Speed_Sensor Command Needed: Return_Speed (returns the
current speed of travel).

- Throttle_Contr ller Command Needed: Change_Throttle_Set-
ting (this command should have a parameter to indicate if an
acceleration or deceleration is desired, and a scalar parameter to

indicate the relative amount of change needed).

4-26

- System_States Command Needed: Return_Engaged (returns
boolean), Return_Desired Speed (returns the desired speed as it
was last set).

- Connector Processing: While Return_Engaged returns true
the connector should loop until Return_Desired Speed is equal to
Return_Speed. If a change to Change_Throttle_Setting is needed,
use a large increment if the speed is off by a large amount, and
a small increment if the speed is close. Delay and reread Cur-
rent_Speed for each loop, adjust the speed as necessary. Check
Return_Engaged frequently, abort if it changes to false. Refine to
make for a smooth speed adjustment.

- Parameters/Variables: Desired_Speed, Acceleration / Decel-

eration scalar.

— Maximum response time: Update every 10 seconds, but do not invoke

if the last invocation has not completed.
e Event 4: Brake is pressed.

— Initiator: Buttons.
— Responses as follows:

* R4: Cruise Control System is disengaged.

- Connector needed: From Buttons to Throttle_Control and Sys-

tem_States.
. Connector name: Brake Pressed.

- Throttle_Controller Command Needed: Release (Releases

the throttle completely).

- System_States Command Needed: Disengage (sets an en-

gaged boolean to false).

- Connector Processing: Invoke Release, Invoke Disengage.

4-27

- Parameters/Variables: None.

— Maximum response time: 0.1 seconds.
e Event 5: Resume button is pressed.

— Initiator: Buttons.
— Responses as follows:

* R5: Cruise Control System is engaged.
- Connector needed: From Buttons to System_States.
- Connector name: Resume.
- System_States Command Needed: Apply Engaged.

- Connector Processing: Invoke Apply Engaged (note: speed

will be adjusted next time the timer invokes).

- Parameters/Variables: None.

— Maximum response time: 0.25 seconds.
¢ Event 6: Accelerate button is pushed.

— Initiator: Buttons.
— Responses as follows:

* R6: Increment Desired Speed.

- Connector needed: From Buttons to System States and Throt-

tle_Controller.

- Connector name: Accelerate.

- Throttle_Controller Command Needed: Change_Throttle_Set-
ting.

- System_States Command Needed: Return_Engaged.

4-2%

- Connector Processing: Invoke Return_Engaged, if true then
Invoke Change_Throttle Setting by one small increment in the

acceleration direction.

- Parameters/Variables: None.

— Maximum response time: 0.25 seconds.
e Event 7: The off button is pressed.

— Initiator: Buttons.
— Responses as follows:

* R7a: Throttle control is disengaged.
- Connector needed: From Buttons Throttle_Controller.
- Connector name: Turn_Off.
- Throttle_Controller Command Needed: Release.
- Connector Processing: Invoke Release.
- Parameters/Variables: None.
* R7b: Cruise Control System deactivated.
- Connector needed: From Buttons to System States.
- Connector name: Turn_Off.
- System _States Command Needed: Disengage, Apply Off.
- Connector Processing: Invoke Disengage, invoke Apply_Off.

- Parameters/Variables: None.

— Maximum response time: 0.1 seconds.

4.3.6 Cruise Control Object-Event Interconnection Diagram. With
the completed Event-Mapping List for the Cruise Control problem, the Objeci-Event
Interconnection Diagram can now be directly drawn as described in Section 3.5.5.2.
Arcs from connectors to responding objects are labeled with command or data names

to make the diagram more independently descriptive.

4-29

change_setting

SET_SPEED engaged?

apRly_speed

TURN_ON

SYSTEM

THROTTLE

SPEED

BUTTONS TIMER

CONTROLLER SENSOR STATES
D
[|
4\ i
speed?
change RESUME
setting
disengage,
engaged? apply_off
disengage
UPDATE
TURNOFF
release
release

Figure 4.4. Cruise Control Object-Event Interconnection Diagram

4-30

4.3.7 Mapping to Ada Specifications. Now with the first transformation
step of the mapping method complete for the Cruise Control problem, the second
step can be accomplished: mapping the results of the first step to Ada specifications
following the guidance of Section 3.5.6. The result is included as Appendix B. The
Ada specifications were developed using the same process as for the elevator problem

described in Section 4.2.6 and the same comments apply.

4.4 Analysis

All the advantages of design reuse presented in Section 3.4, which can be shown

through design, are evident in these designs, as follows:

e The two designs are very similar. Both designs follow the same structure
pattern, use the same concepts and principles, and are represented using the
same tools. The same object template was used to instantiate the object

managers for both problems.

o The second problem was developed much more quickly than the first owing to
design pattern reuse, reuse of the object template, and reuse of other design

constructs.
e Each design can be instantiated within its somewhat limited domain.

e The objects have high potential for reuse because of very-low coupling. Each
depends only on the Standard_Engineering_.Types package, and a connector
procedure if the object is an event initiator. However, many of the objects
have hardware dependencies. “Swapping out” the implementation part of an

object should also prove to be easy because of low coupling.

e Implementation will be easier because no direct compilation dependencies exist

between the objects. Each object can be developed in isolation of the others.

4-31

e The implementations should prove efficient because message passing employs
only one intermediary: a connector. No hierarchical bottlenecks are encoun-

tered in moving a message from initiator to responder.

¢ The designs are object oriented and closely resemble the real-world problem.

A fundamental benefit of these designs is consistency, both internally and be-
tween designs. An implementor or maintenance programmer who was familiar with
one of these designs could quickly become familiar with the other. Similarly, a de-
velopment organization having developed an application using one of these designs
could quickly develop an application using the other. Also, because of internal con-
sistency, a programmer familiar with one part of the design, could easily become

famitiar with another part.

4.5 Suggestions for Design Implementation

The implementor of the foregoing designs will need to write the package bodies
for the object managers. Also, because no main driver is inherit in the design, the
implementor will need to write a main driver procedure for the purpose of compil-
ing, linking, loading, and invoking the system as a unit. This driver only needs to
be a null procedure that directly and indirectly “with”s the other components. For
example, this procedure only needs to with the aggregate packages, the rest of the
components will be included since all object managers are withed by the aggregates,
each connector is withed by at least one (usually exactly one) object manager; the
Standard_Engineering_Types package is withed by the object managers also. Simi-

larly, if executives exist, then the main procedure need only with these executives.

4.6 Simulation Implementation of the Elevator Design

As an additional validation step, the elevator design presented in Section 4.2
and Appendix A was implemented as a s'mulation. The implementation demon-

strates that a directly usable design results from application of the mapping method.

4-32

The simulation was developed in Ada on a personal computer and targets to the
same. The design code from Appendix A was used; implementation of the package

bodies is included as Appendix C.

The simulation runs in real time for a realistic simulation; that is, it runs
interactively like an actual elevator system. Images of the elevators and buttons ap-
pear on the simulation screen. The simulation operator can enter summons requests
and destination requests from the keyboard at any time during the simulation. The
elevators can be seen to move up and down and the appropriate buttons are illumi-
nated on the screen in response to requests. Button lights are extinguished when

the elevator arrives. The simulation runs until the operator quits.

The elevator design was instantiated for 16 floors and four elevators using the
Number_of _Elevators and Number_of _Floors parameters in CONFIGURATION
AREA #1: of the Standard_Engineering_Types package. All the hardware addresses,
interrupts, and command values in this package were commented out because they

were not needed for the simulation.

A few minor changes had to be made to the design code in Appendix A.
Procedures had to be added to some of the object managers to supplement entry
statements assigned to interrupts. For example, the entry waiting for an interrupt
from the floor sensor had to be supplemented with an exported procedure to receive
flocr-approaching messages from the motor simulator. Another minor change was
necessitated by a perceived elaboration order problem by the binder that came with
the compiler. The system-aggregate packages were using the pragma “elaborate”
to ensure that they were elaborated last because they load data into their data
structures at elaboration time. The change was to load the data using an initialize

procedure instead.

Implementation was accomplished in about 5 working days. The package body
for the simulation screen controller was written by anosther student. A semi-colon

count to approximate Lines-Of-Code (LOC) was conducted and the results follow:

4-33

Standard Engineering Types (no body) :33 LOC

Object Manager Specifications : 110 LOC
System Aggregate Packages :30 LOC
Connectors : 65 LOC
Design Code TOTAL : 238 LOC
Object Manager Bodies : 333 LOC
Mapping Method TOTAL : 571 LOC
Simulation Driver : 98 LOC
Screen Controller Specification : 13 LOC
Screen Controller Body 222 LOC
Simulation Grand TOTAL 904 LOC

The results of the simulation implementation are very encouraging. Imple-
mentation of the design was quick and easy. The Ada design code produced by
the mapping method was used with no significant change. The design was easily
instantiated for the numbers of floors and elevators. By far the bulkiest of the
object-manager bodies was the Scheduler manager. This package appears to have
high potential for reuse, at the component level, due to its simple, straight-forward
interfaces. The implementation of the elevator problem demonstrates that the map-

ping method produces a design that works.

V. Conclusions and Recommendations

5.1 Summary of Contribution

5.1.1 Identification of Design Reuse Importance, Benefits, and Char-
acteristics. This thesis seeks to refocus the emphasis of reuse research from small
component reuse to design reuse. Chapter I identified the importance of design
reuse for improving software development productivity. Chapter Il developed a bet-
ter definition of the idea through literary definitions, discussions of related issues, and
presentations of ground-breaking research and development in this area. Chapter 11
also discussed characteristics a reusable design should exhibit to support smaller
component reuse as a side benefit in Section 2.7. Chapter III enumerated advan-
tages and characteristics of a particular reusable design developed at the Software
Engineering Institute in Section 3.4. An important goal of this thesis is to define
design reuse and to push the software development community toward evolving the

technology in this area.

5.1.2 A Mapping Method for Consistent, Reusable Designs. A spe-
cific contribution of this thesis is to present a method for mapping different problems
in the same application domain to similar design solutions. The fundamental idea
is that different software problems within the same domain should have very similar

design solutions; such designs become candidates for reuse within te domain.

This method directly addresses the problem statement of Chapter I, which
argues that design reuse is the threshold that needs to be broken to gain true advances

in the area of increased software-development productivity through reuse.
P y g

The method presented is suitable for embedded, event-driven software prob-
lems. The method maps from the products of March’s Object-Oriented Analysis
method to a design based very closely on the principles of the OOD-Paradigm [Maich,
1989], [Rissman and others, 1988).

The method is validated by applying it to two problems and recognizing the

similar results, by assuming that a design following the principles of the OOD-

Paradigm will exhibit the benefits of Section 3.4, and by implementing one of the

resulting designs.

5.1.3 A Method of Design Representation. In Chapter I, Biggerstaff

and Richter were quoted as complaining that no method existed for representing

designs in such form that they could be reused (like code is reused, see Section 1.1.1).

This problem was addressed in the following ways:

o

. Creation of the Hierarchical-Structure diagram and the Object-Event Inter-

connect Diagram. A purpose of these diagrams is to force designs within the
domain to look the same. These diagrams lead to the same pattern from ap-
plication to application. The corresponding Ada specifications also look the

salne.

Development of the method of following a design-pattern model to help in
generalizing a reusable design. The model used for the mapping method was

an event-response model.

Adoption of the Object Template from the OOD-Paradigm. The Object Tem-

plate is a design-component generic.

Adoption of the Standard_Engineering_Types package from the OOD-Paradigm.
The Stai.dard_Engineering_Types package was expanded here to contain spe-
cific configuration areas for instantiating an implementation within a domain

of application.

5.1.4 Designs That Are Quick to Implement. Because of the consistent

design patterns between object managers, implementation of the elevator design was

fast and painless. As described in Section 4.6, implementation of the elevator design

required only 5 days for about 670 lines of code (including 98 lines for the driver).

5-2

This time period included integration with the screen simulator, testing, debugging,

and time to install and become familiar with the compiler.

Implementation was speeded because very little design documentation had
to be referenced beyond the documentation in the specifications of the object man-
agers. Many of the implementation chores became repetitious and mechanical. Some
creativity was required, but none beyond the basic skills expected of a competent

programmer. Implementation did not require deviation from the design.

The consistent design patterns inherent in these designs, owing to the goal of

desiga reuse, can be concluded to enhance the implementation process.

See also Section 1.5, “Maximum Expected Gain,” for more information on the

contribution of this thesis.

5.2 Related Further Research

This thesis breaks ground in the area of design reuse; many related issues
remain to be explored. These issues include both how these generalized solutions

will perform and in finding these general solutions.

5.2.1 Application to Larger Systems. Today’s software systems are
large and problems of complexity multiply with larger systems. The real test of
any development method would be to have it succeed for a large system [Booch,

1991:pp2-23].

To handle large applications, the mapping method and OOD-Paradigm are
based on the idea of having two levels of aggregation: the system level and the ex-
ecutive level. The two example problems solved were not sufficiently large to utilize
more than one executive, therefore no executives were defined. The principle of the
executive, as pioneered by the SAE team at the SEI, is to distribute each executive

onto its own processor. This means that the connector concept may have to be ex-

5-3

panded since distribution would likely mean that the executives would have to com-
municate via networks. Despite this, most message passing would still be conducted
at the lower levels of abstraction due to a basic interaction principle: “interactions
inside subsystems are more frequent than interactions between subsystems” (Booch

quotes Courtois [Booch, 1987:pp556)).

Even without the concern of distribution, larger systems may cause the number
of connectors to become unruly. A few possible approaches would be to group
connectors in packages or if the number of systems becomes very large some simplicity
may be restored b, having the aggregate packages provide the additional function

of the system-level connectors.

These and other concerns related to application to larger systems need to be
explored. Large system development should be an important area of research at

AFIT.

5.2.2 Timing and Sizing Studies. Experience has demonstrated that a
major shortcoming in the software engineering community is an inability to predict
the satisfaction of nonfunctional requirements from a design (to get the same expe-
rience become a regular reader of the comp.lang.ada bulletin board.). In particular,
Ada developers are developing the reputation for not being able to predict, or meet,
timing and sizing constraints. This factor is often the justification cited in requests

for Ada waivers.

Prediction of satisfaction of nonfunctional requirements from design is certainly
an area that could benefit greatly from design reuse. Once a design has been imple-
mented, a good basis exists for predicting the timing and sizing characteristics for

further uses of the design.

Of course, the design must follow good principles of performance engineering

design to begin with. A few leads for research in this area follow:

o The SEI series book: “Performance Engineering of Software Systems” by Con-
nie U. Smith [Smith, 1990:pp33-110], presents many important principles of
performance engineering that are applicable at the design stage. A good sug-
gestion might be to critique the OOD-Paradigm and mapping-method designs
against the “Principles for Creating Responsive Software” in chapter 2 of her

book.

Intuitively it would appear that, due to flatness of the resulting designs, the
mapping-method designs would fare well against at least the “independent”

type of principles listed in table 2.1 of her book.

e Also, the mapping-method designs appear amenable to performance measure-
ments owing to the flat architecture and the reuse aspects of the design and
components. Because the designs consist of communicating components at a
single level and reused objects may have known performance characteristics,
measurements may be possible by summing the values for each object and then

adding some overhead factor.

5.2.3 Categorizing Reusable Designs by Application Domains. Not
all software solutions can be made to fit the same general solution. Different kinds
of software problems will map to different kinds of general solutions. Brown and

Quanrud make the following statement in this regard:

A generic architecture is not intended for use outside of its specific do-
main. The expectation is that a separate architecture will be needed for
each different application domain. [Brown and Quanrud, 1988:pp390]

Plinta and Lee, who call reusable designs “models,” point out that many of
these “models” need to be accumulated. They summarize a method of arriving at

thern in the following quote:

To realize these payoffs [from Design Reuse], model databases must be
populated ...First, domain experts need to identify reoccurring prob-
lems in their domains ...Second, model solutions need to be developed
and verified ... Verification is based on both functionality and perfor-
mance ... After the solutions are verified, the prototype solutions are
generalized to produce code templates and generics. The templates and
generics help to insure that each instantiation of the model provides the
functionality specified by the model. They also promote code and com-

ment consistency. These characteristics encourage reuse. [Plinta and
Lee, 1989:pp66]

Chapter II demonstrated that general designs from two different domains can
appear quite different. Our suggestion for further research is to categorize general
solutions by domains. With such information in hand, a developer would have a
good idea of what the design patterns should look like very early in the development

just by knowing the problem’s application domain

5.3 Suggestions For March’s Analvsic Method.

5.3.1 Make Requirements Tracing Easier. Overall March’s analysis
method was found to be quite satisfactory. However, there were some difficulties
usi..g March’s products in the arca of requirements traceability. Paragraph 4.2.6
of [DoD-STD 2167A, 1985:ppl4] calls for traceability of requirements to design.
Traceability implies some way of labeling and/or enumera.ing requirements. Of the
products of March’s Analysis, only the Event/Response list and the Message Senders
and Receivers list enumerate requirciments. Indeed, these lists are the key to tracing
requirements from his products and are the major products used by the mapping
method. Our concern is that all the other products of March’s analysis (listed in

Section 3.2) do not have ready labels or numbers that can be used for tracing.

During the mapping process documented in Chapter IV of this thesis, the major
benefit of much of the information in March’s analysis was to enhance familiarity
with the problem, but they were not necessarily mapped directly to design. Also,

a good deal of overlap occurs from one product to another because many of the

5-6

products are actually intermediate steps used to understand the problem and to
derive the other products. For exampie, his analysis is bulging with concept maps,
but most of these do not n:ap directly to design, although used in combination with

other products they did help in making design mapping decisions.

The problems with traceability come in when trying to decide which products
need to be mapped to design, and how to label them. Which products are traced and
which are there for the purpose of enhancing understanding? We choose to directly
map the Event/Response list, the Message Senders Receivers list, the Preliminary
Object List, and the Metarequirements. Perhaps the analysis should be more clear
on which products are to be traced, which are intermediate products, and which are

for the purpose of enhancing understanding of the problern.

5.3.2 Other Possible Uses. March’s Object-Oriented analysis actually
does more than just define user requirements. It defines every concept from the
concept maps as an object and attempts to define all useful suffered operations for

each object. For this reason, it could probably be used as a domain analysis tool.

Because the method defines a structure between objects and operati ns for
objects, it also could be considered a high-level design method as eluded to in
[Umphress, 1990]. However, if the design from the analysis were used, the result
would be subject to the same complaints raised in the problem statement of Chap-

ter L.

5.4 Closing Remarks

Design reuse needs to become common practice in the software-engineering
community to help propel us toward overcoming the symptoms of the software cri-
sis. Reusable designs should be developed using principles developed in this thesis
to achieve the benefits listed in Section 3.4. Some of these benefits of design reuse

are greater development productivity; less documentation, maintenance, and testing

effort; and greater reliability. The mapping method presented in this thesis leads to
consistently-structured designs that exhibit the potential for all these benefits. The
mapping method breaks new ground in the area of providing a reusable representa-
tion for designs. The mapping method presented here yields a basis for application

and further study in the area of reusable designs.

5-8

Appendix A. Ada Specifications for the Elevator Problem

A.1 Standard_Engineering Types

with System;
package Standard_Engineering_Types is

--This package serves two purposes:

== 1. It defines types for parameters that are used in the elevator
-- control system. These parameters were mapped from the

-- Object-Mapping Table that mapped all the objects defined in the
-= analysis. Areas marked "PARAMETER AREA #X:" contain parameters
-- that were mapped from the analysis.

-~ 2. It configures the design for reusability. The areas marked:
-- "CONFIGURATION AREA #X:" contain data used to instantiate the
-- design. The parameters that can be instantiated are:

-~ --The number of elevators.

-- --The number of floors.

-~ --The weight capacity of each elevator.

-~ --A11 the hardware interface values, including:

-- --The interrupt vectors for each elevator, including:
-- --The floor sensor interrupt vector.

-- --The control panel interrupt vector.

- --The register address for each elevator, including:
-= --The weight sensor register address.

-- --The control panel input register address.

-~ --The control panel output register address.

== --The floor sensor input register address.

== -~-The location panel output register address.

-~ --The motor control register address.

-- --The Motor Control Commands for each elevator, including:
-- --Motor Up command.

- ~-Motor Down command.

-~ --Motor Stop command.

-- --A11 the following values for the floor summons panels:
-- --The Up Interrupt vector.

-~ --The Down Interrupt vector.

-~ --The up input register address.

-- --The down input register address.

-~ --The up ocutput register address.

-~ --The down cutput register address.

-- This means that the elevator control system can be configured for

-- different elevator hardware systems just by instantiating these

-- values.

--This design could be expanded to have multiple Schedulers and Summons
--Controllers.

-- --CONFIGURATION AREA #1:

Number_of_Elevators : constant := 4;
Number_of_Floors : constant := 40;
--Number_of_Floor_Panel_Controllers : constant := 1;
--Number_of_Schedulers : constant := 1;
--PARAMETER AREA #1:
type Elevator_ID_Type is range 1..Number_of_Elevators; |

--type Flcor_Panel_ID_Type is range 1..Number_of_Floor_Panel_Controllers;
--type Scheduler_ID_Type is range 1..Number_of_Schedulers;

type Floor_Type is range 1..Number_of_Floors;
subtype Weight_Type is integer;
type Direction_Type is (up, down, parked);

~-CONFIGURATION AREA #2:

--Bits : constant :=1;
~-type Byte_Type is range 16#00#..16#FF#;
--for Byte_Type’size use 8*Bits;

--PARAMETER AREA #2:

--1’d prefer to make these "Derived Types"

subtype Interrupt_Num_Type is System.Address;
subtype Register_Address_Type is System.Address;
subtype Command_Byte_Type is System.Address;

A-2

type Elevator_Data is record

Control_Panel_Interrupt : Interrupt_Num_Type;
Floor_Sensor_Interrupt : Interrupt_Num_Type;
Weight_Sensor_Register : Register_Address_Type;
Control_Panel_Input_Register : Register_Address_Type;
Control_Panel_Output_Register : Register_Address_Type;
Floor_Sensor_Input_Register : Register_Address_Type;
Location_Panel_Output_Register : Register_Address_Type;
Motor_Control_Register : Register_Address_Type;
Motor_Command_Up : Command.Byte_Type;
Motor_Command_Down : Command_Byte_Type;
Motor_Command_Stop : Command_Byte_Type;
Weight_Capacity_Hundreds : Weight_Type;

end Record;

type Elevator_Data_Array_Type is array(Elevator_ID_Type) of Elevator_Data;
Elevator_Data_Array : Elevator_Data_Array_Type;

type Floor_Panel_Data_Type is record

Up_Interrupt : Interrupt_Num_Type;
Down_Interrupt : Interrupt_Num_Type;
Up_Input_Register : Register_Address_Type;
Down_Input_Register : Register_Address_Type;
Up_Output_Register : Register_Address_Type;

Down_Output_Register : Register_Address_Type;
end record;
Floor_Panel_Data : Floor_Panel_Data_Type;

end Standard_Engineering_Types;

package body Standard_Engineering_Types is

begin
--Configure Elevator Data by plugging in the Interrupt Vectors, Register
-~-Address, and Hardware Commands:

A-3

--CONFIGURATION AREA #3:

-~First Elevator:

Elevator_Data_Array(1)
Elevator_Data_Array(1)

Elevator_Data_Array(1)
Elevator_Data_Array(1)
Elevator_Data_Array(1)
Elevator_Data_Array(1)
Elevator_Data_Array(1)
Elevator_Data_Array(1)

Elevator_Data_Array(1)
Elevator_Data_Array(1)
Elevator_Data_Array(1)
Elevator_Data_Array(1)

Elevator_Data_Array(2)
Elevator_Data_Array(2)

Elevator_Data_Array(2)
Elevator_Data_Array(2)
Elevator_Data_Array(2)
Elevator_Data_Array(2)
Elevator_Data_Array(2)
Elevator_Data_Array(2)

Elevator_Data_Array(2)
Elevator_Data_Array(2)
Elevator_Data_Array(2)
Elevator_Data_Array(2)

.Control_Panel_Interrupt = 16#01%;
.Floor_Sensor_Interrupt = 16#05#;
.Weight_Sensor_Register = 16#31%;
.Control_Panel_Input_Register = 16#35#%;
.Control_Panel_Output_Register := 16#39%;
.Floor_Sensor_Input_Register = 16#41%;
.Location_Panel_Output_Register := 16#45#;
.Motor_Control_Register = 16#51#;
.Motor_Command_Up = 16#01%;
.Motor_Command_Down = 16#02%#;
.Motor_Command_Stop = 16#03%;
.Weight_Capacity_Hundreds = 100;

--(10,000) 1lbs

.Control_Panel_Interrupt = 16#02%;
.Floor_Sensor_Interrupt = 168#06%#;
.Weight_Sensor_Register = 16#32#%;
.Control_Panel_Input_Register = 16#36#;
.Control_Panel_Output_Register = 16#3A%;
.Floor_Sensor_Input_Register = 16#428%;
.Location_Panel_Output_Register := 16#46%;
.Motor_Control_Register = 16#52%;
.Motor_Command_Up = 16#01%;
.Motor_Command_Down = 16#02%;
.Motor_Command_Stop = 16#03#;
.Weight_Capacity_Hundreds = 100;

--(10,000) 1bs

FElevator_Data_Array(3).Control_Panel_Interrupt 1= 16803#;

A-4

Elevator_Data_Array(3)

Elevator_Data_Array(3)
Elevator_Data_Array(3)
Elevator_Data_Array(3)
Elevator_Data_Array(3)
Elevator_Data_Array(3)
Elevator_Data_Array(3)

Elevator_Data_Array(3)
Elevator_Data_Array(3)
Elevator_Data_Array(3)
Elevator_Data_Array(3)

- R -~ ————]~ - - ———— > _——— - ———

Elevator_Data_Array(4)
Elevator_Data_Array(4)

Elevator_Data_Array(4)
Elevator_Data_Array(4)
Elevator_Data_Array(4)
Elevator_Data_Array(4)
Elevator_Data_Array(4)
Elevator_Data_Array(4)

Elevator_Data_Array(4)
Elevator_Data_Array(4)
Elevator_Data_Array(4)
Elevator_Data_Array(4)

.Floor_Sensor_Interrupt

.Weight_Sensor_Register
.Control_Panel_Input_Register
.Control _Panel_Output_Register
.Floor_Sensor_Input_Register
.Location_Panel_Output_Register :
.Motor_Control_Register

.Motor_Command_Up
.Motor_Command_Down
.Motor_Command_Stop
.Weight_Capacity_Hundreds

.Control_Panel_Interrupt
.Floor_Sensor_Interrupt

.Weight _Sensor_Register
.Control_Panel_Input_Register
.Control_Panel_Output_Register
.Floor_Sensor_Input_Register
.Location_Panel_Output_Register :
.Motor_Control_Register

.Motor_Command_Up
.Motor_Command_Down
.Motor_Command_Stop
.Weight_Capacity_Hundreds

16807#;

16#33#;
16#37%;
16#3B#;
16#43%;
16#47#;
16#53#;

16#01%;
16#02#%;
16#03#;
200;

--(20,000) 1bs

- - " - = - — -

16#04#%;
16#08#;

164#34%;
16#384%;
16#3C#;
16#444#;
16#48#;
16#548;

16#01#;
1680284 ;
16403%;
200;

--(20,000) 1bs

o s - - Am - = e e e an = e e - - -

e - . a = e o - - - - - " -

Floor_Panel_Data
Floor_Panel_Data

Floor_Panel_Data
Floor_Panel_Data

.Up_Interrupt 1=
.Down_Interrupt 1=

.Up.Input_Register
.Down_Input_Register

16%#0A%;
16#0B%;

1684A4%;
16#4B#;

o

Floor_Panel_Data.Up_Output_Register
Floor_Panel_Data.Down_Output_Register :

16#4C#;
16#4D%;

e e = = - - = = v 4= e e A S -

end Standard_Engineering_Types;

A.2 Object_Manager_Template

with Standard_Engineering_Types;
--with System --This with is needed if the object will receive
--interrupts.

--with <List of other "withed" components needed by package bedy. This
list should contain one or more connectors. This list should
be deleted upon implementation of the package body>;

package <Object>_Manager is

package SET renames Standard_Engineering. Types;

List stimuli and their sources (i.e. all hardware
interrupts, all calls to exported functions/procedures).

RESPONSE SUMMARY:
Copy list from stimulus summary above and explain the
following for each:

- Response to stimulus.

- Whether the response is conducted internal to the object
manager or external. Sending messages to other objects
or software events outside the control of this object
should be considered external. Writing to hardware under
direct management of the object, or reading data from
the specification of another package should be
considered internal.

- Include references to the exported operations (below),

their parameters, and the fields of the
<0bject>_Representation. It should be apparent what

A-6

all these things are for.

~- Here is an example of the format:

-- STIMULUS SUMMARY:
-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
-- "New_<0Object>."

- Continued list of stimuli

-- 1. Receives a call to create a new instance of the object.
-- a. Internal Response:

-- i. U'ses the interrupt value to create a new

-- isnstance of the task; it does this by assigning the
-- interrupt value to the Floor_Sensor_Interrupt_Num
-~ variable before creating the new instance.

-- Maintains copies of the incoming register value
-- and Elevator_ID value for later use.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Copied Stimulus #2 from above

A-7

-- Continued List of Responses for each stimulus.

--Al1l the fields in the <Object>_Representation.

function New_<Object>(<System_Level>_ID : SET.<System_Level>_ID_Type;
Data needed to fill in fields of the
<Object>_Representation);
return <Object>_Type;

procedure Apply_<Stimulus>_To(This_<Object> : in <Object>_Type;
<Parameters> : in <Parameter>_Type;

)

function Return_<State>_From(This_<Object> : in <Object>_Type)
return <State>_Type;

private
--if no interups:
type <0bject>_Representation is record
<System_Level>_ID : SET.<System_Level>_ID_Type;

.--States and attributes needed for this instance of the
--object.

end record;
~--if this object will receive interrupts:

<Kind>_Interrupt_Num : SET.Interrupt_Num_Type;
task type <0Object>_Representation is
entry Initialize
(Up_Input_hegister : in SET.Register_Address_Type;

<Data needed by object>);

entry <Kind>_Interrupt;
<entrys to carry out required operations>;

for <Kind>_Interrupt use at <Kind>_Interrupt_Num;
end <0bject>_Representation;

--The full definition may be moved to the package body
--after implementation of the body is complete.

type <Object>_Type is access <Object>_Representation;
--pointer to a <Object>_Representation

end <0Object>_Manager;

A.3 Object_Managers
A.3.1 Floor_Panel_Manager.

with Standard_Engineering_Types;
with System;

--with Summons (connector); --needs to be "withed" from
--the package body.

package Floor_Panel_Manager is

A-9

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
-- "New_Floor_Panel."

-- 2. Receives an interrupt indicating that a summons button was
-- pressed from one of the floors.

-- Source of Stimulus : interrupt from hardware
-- (Up/Doun_Interrupt).

-- 3. Receives a call indicating that the light under one of the
-- summons buttons should be extinguished.

-- Source of Stimulus : call to exported procedure
-- (Apply_Light_Out_To).

-- 1. Receives a call to create a new instance of the object.
-- a. Internal Response:

-- i. Uses the two interrupt values in creating a new

-- instance of the task; it does this by assigning the
-- interrupt values to the Up/Down_Interrupt_Address
-- variables before creating the new instance.

-- ii. Uses correspondingly named fields of the

-- Floor_Panel_Data record to initialize the task

-- using the "initialize" entry. The Floor_Panel_Data
-- record is in the Standard_Engineering_Types

-- package.

-- iii. Returns an instance of the object to the caller.

b. External Response:
i. none.

. Receives an interrupt indicating that a summons button was
pressed from one of the floors.

a. Internal Response:

i. Reads the memory mapped eight-bit input register
(Up/Down_Input_Register) to determine from which
floor the summons button was pushed.

ii. Writes to the appropriate output register
(Up/Down_QOutput_Register) to turn on the
appropriate button light (Writing the floor number
to this register toggles the light).

b. External Response:
i. Invokes the _Summons_ connector (event) procedure to

indicate that a summons has occurred. The parameters
needed to call Summons are Floor and Direction.

. Receives a call indicating that the light under one of the
summons buttons should be extinguished.
a. Internal Response:

i. Writes to the appropriate output register
(Up/Down_Output_Register) tc turn off the
appropriate button light (Writing the floor number
to this register toggles the light).

b. External Response:

i. none

A-l1

-- --A11 the fields in the Floor_Panel_Representation

-- --The state of the lights is recognized by the hardware. If
-- one of the buttons is illuminated the hardware will not
- cause an interrupt if that button is pushed.

function New_Floor_Panel
(Up_Interrupt : SET.Interrupt_Num_Type;
Down_Interrupt : SET.Interrupt_Num_Type)
return Floor_Panel_Type;

procedure Apply_Light_Out_To(This_Floor_Panel : in Floor_Panel_Type;

Floor : in SET.Floor_Type;
Direction : in SET.Direction_Type);
private
Up_Interrupt_Address : SET.Interrupt_Num_Type;

Down_Interrupt_Address : SET.Interrupt_Num_Type;

task type Floor_Panel_Representation is
entry Initialize

(Up_Input_Register : in SET.Register_Address_Type;
Down_Input_Register : in SET.Register_Address_Type;
Up_Output_Register : in SET.Register_Address_Type;

Down_Output_Register : in SET.Register_Address_Type);
entry Up_Interrupt;
entry Down_Interrupt;
entry Light_COut(Floor : in SET.Floor_Type;
Direction : in SET.Direction_Type);

for Up_Interrupt use at 'p_Interrupt_Address;

A-12

for Down_Interrupt use at Down_Interrupt_Address;
end Floor_Panel_Representation;

--This entire private part definition can be moved to the
--package body after implementation of the body is

--complete.

type Floor_Panel_Type is access Floor_Panel_Representation;
-~pointer to a Floor_Panel_Representation

end Floor_Panel_Manager;

A.3.2 Weight_Sensor_Manager.
with Standard_Engineering_Types;
--with: No packages "withed" from body
package Weight_Sensor_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
-- "New_Weight_Sensor."

-- 2. Receives a call to determine if the Elevator Weight is
-- below or equal to the maximum for this elevator.

-- Source of Stimulus: call to exported procedure
-- "Return_Weight OK_From."

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.
-- a. Internal Response:

-- i. Loads values from the Elevator_Data_Array to the

-- corresponding fields of the
-- Weight_Sensor_Representation. The

A-13

-- Elevator_Data_Array is in the

-- Standard_Engineering_Types package. The proper

-- record in the array is found by indexing using the
- Elevator_ID passed in.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives a call to determine if the elevator weight is

-- exceeds the maximum for this elevator.

-- a. Internal Response:

-- i. Reads the memory mapped eight-bit input register

-- (Weight_Sensor_Register) to determine the current
-- weight of the elevator.

-- ii. Compares the current weight of the elevator to the
-- maximum weight for this elevator

-- (Weight_Capacity_Hundreds).

- iii. Returns false in the elevator weight exceeds the
-- maximum, returns true otherwise.

-- b. External Response:

-- i. none.

-------------------- > STATES MAINTAINED <---=--=====-=-o--ccmoooooon

--Al1 the fields in the Weight_Sensor_Representation.

A-14

function New_Weight_Sensor
(Elevator_ID : SET.Elevator_ID_Type) return Weight_Sensor_Type;

function Return_Weight_OK_From
(This_Weight_Sensor : Weight_Sensor_Type) return boolean;

private
type Weight_Sensor_Representation is record
Elevator_ID : SET.Elevator_ID_Type;
Weight_Sensor_Register : SET.Register_Address_Type;
Weight_Capacity_Hundreds : SET.Weight_Type;
end record;
--The full definition may be moved to the package body
--after implementation of the body is complete.

type Weight_Sensor_Type is access Weight_Sensor_Representation;
--pointer to a Weight_Sensor_Representation

end Weight_Sensor_Manager;

A.3.3 Scheduler_Manager.

with Standard_Eungineering_Types;
--with Arrives, Proceed;
package Scheduler_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
-- "New_Scheduler."

-- 2. Receives a summons request indicating a would-be passenger
-- is waiting on one of the floors.

-- Source of stimulus : exported procedure (Apply_Summons_To)

-- 3. Receives a destination indicating a passenger selected a
-- floor button from inside an elevator.

-- Source of stimulus : exported procedure
-- (Apply_Destination_Request_To).
-- 4. Receives an indication that an elevator is approaching a

-- floor.

-- Source of stimulus : exported procedure
-- (Apply_Floor_Approaching).

-- 1. Receives a call to create a new instance of the object.
-- a. Internal Response:

-- i. Return an instance of the Scheduler to the caller

-- b. External Response:

- i. none.

-- 2. Receives a summons request indicated a would-be passenger
-- is waiting on one of the floors.

A-16

a. Internal Response:

i. Add the request to a list of outstanding requests
for that floor and direction.

b. External Response:
i. If there is an idle elevator, dispatch it to the
floor where the summons was issued by invoking the

connector "Proceed."

Receives a destination indicating a passenger selected a
floor button from inside an elevator.

a. Internal Response:

i. Add the request to the destination list for the
elevator.

b. External Response:
i. If the elevator is idle then dispatch it toward

the selected floor by invoking the connector
"Proceed."

. Receives an indication that an elevator is approaching a

floor.
a. Internal Response:
i. Check to see if the elevator is scheduled to stop
at this floor for this direction (the Scheduler

knows which direction the elevator is traveling);

ii. After stopping, remove floor from the destination
list for this elevator.

b. External Response:

i. If the elevator is scheduled to stop aiL this floor
and direction then call connector "Arrives.'

ii. After the elevator is stopped for three seconds
then have it proceed to the next destination by

A-17

-- calling connector "Proceed."

-- Note: Since the floor sensor does not signal

-- stopped, we will have to estimate how long it
-- take the elevator to stop and add that to the
-- three seconds. This additional delay time could
-- be added as a configuration item in the

-- Standard_Engineering_Types package.

-------------------- > STATES MAINTAINED <--==-==-===-====mcoooacoonn

-- 1. List of pending destinations for each elevatoer

-- 2. List of pending Summons for each for each floor and direction
-- 3. Current state of each elevator sufficient for efficient

-- scheduling. Sufficient information is available from the

-- knowledge of the last floor a elevator reported from, and the
-- direction it was dispatched. There is no need to query elevator
-- components about their state.

function New_Scheduler return Scheduler_Type;

procedure Apply_Summons_To(This_Scheduler : in Scheduler_Type;
From_Floor : in SET.Floor_Type;
Direction : in SET.Direction_Type);

procedure Apply_Destination_Request_To
(This_Scheduler : in Scheduler_Type;
Elevator : in SET.Elevator_ID_Type;

Floor : in SET.Floor_Type);
procedure Apply_Floor_Approaching
(This_Scheduler : in Scheduler_Type;
Floor : in SET.Floor_Type;
Elevator : in SET.Elevator_ID_Type);

private

type Scheduler_Representation;
--~incomplete type, defined in package body

type Scheduler_Type is access Scheduler_Representation;
-~pointer to a Floor _Panel_Representation

end Scheduler_Manager;
A.3.4 Location_Panel Manager.

with Standard_Engineering_Types;
--with: No packages "withed" from body
package Location_Panel_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.
-= Source of Stimulus: call to exported procedure

-- "New_Location_Panel."

-- 2. Receives a call to update the lights in the floor

-- indicator panel.

-- Source of Stimulus: call to exported procedure
-- "Apply_Update_Location_Indicator."

-- RESPONSE SUMMARY:

A-19

-- 1. Receives a call to create a new instance of the object.
-- a. Internal Response:

-- i. Loads values from the Elevator_Data_Array to the
-= corresponding fields of the

-- Location_Panel_Representation. The

-- Elevator_Data_Array is in the

-- Standard_Engineering_Types package. The proper

-- record in the array is found by indexing using the
-- Elevator_ID passed in.

~-- ii. Returns an instance of the object to the caller.

-- b. External Resporse:

-- i. none.

-- 2. Receives a call to update the lights in the floor
-- indicator panel.

-- a. Internal Response:

-- i. Writes the floor number of the indicator light

-- which is currently lit

-- (Current_Floor_Indicator_Lit) to the appropriate

-- output register (Location_Panel_Output_Register) to
-- turn off the light to the previous floor. (Writing
-- the floor number to this register toggles the

-- light).

-- ii. Writes the floor number of the indicator light

-~ which is to be lighted (New_Floor) to the

-- appropriate output register

-- (Location_Panel_Output_Register) to turn on the
-~ light. (Writing the floor number to this register
-- toggles the light).

-- 1ii. Updates Current_Floor_Indicator_Lit to equal
-- New_Floor.

-- b. External Response:

-- i. none

-------------------- > STATES MAINTAINED <=---m=---=-=emomoocoomomooc

--All the fields in the Location_Panel_Representation.

function New_Location_Panel(Elevator_ID : SET.Elevator_ID_Type)
return Location_Panel_Type;

procedure Apply_Update_Location_Indicator
(This_Location_Panel : in Location_Panel_Type;
New_Floor : in SET.Floor_Type);

private

type Location_Panel_Representation is record
Elevator_ID_Type : SET.Elevator_ID_Type;
Current_Floor_Indicator_Lit : SET.Floor_Type;
Location_Panel _Output_Register : SET.Register_Address_Type;
end record;
--The full definition may be moved to the package body
--after implementation of the body is complete.

type Location_Panel_Type is access Location_Panel_Representation;

A-21

--pointer to a Location_Panel_Representation

end Location_Panel_Manager;

A.3.5 Control Panel Manager.

with Standard_Engineering_Types;
with System;

--with Destination_Requested (connector); --needs to be "withed" from
--the package body.

package Control_Panel_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.
-- Source of Stimulus: call to exported procedure

-- "New_Control_Panel."

-- 2. Receives an interrupt indicating that a floor has been

-- requested.

-- Source of Stimulus : interrupt from hardware
-- (Control_Panel_Interrupt).

-- 3. Receives a call indicating that the light under one of the
-- destination buttons should be extinguished.

-- Source of Stimulus : call to exported procedure
-- (Apply_Light_Out_To).

-- 1. Receives a call to create a new instance of the object.

-- a. Interrnal Response:

A-22

ii.

iii.

b. Ext

i.

. Uses the interrupt value to create a new

instance of the task; it does this by assigning the
interrupt value to the Control_Panel_Interrupt_Num
variable before creating the new instance.

Uses correspondingly named fields of the
Elevator_Data_Array to initialize the task using

the "initialize" entry. The Elevator_Data_Array is in
the Standard_Engineering_Types package. The proper
record in the array is found by indexing using the
Elevator_ID passed in.

Returns an instance of the object to the caller.

ernal Response:

none.

2. Receives an interrupt indicating that a floor has been

reques
a. Int
i.
ii.
b. Ext
i
3. Receiv

ted.
ernal Response:

Reads the memory mapped eight-bit input register
(Control_Panel_Input_Register) to determine which
floor vas selected.

Writes to the appropriate output register
(Control_Panel_Output_Register) to turn on the
appropriate button light (Writing the floor number
to this register toggles the light).

ernal Response:

. Invokes the _Destination_Requested_ connector

procedure to indicate that a destination request has
occurred. The parameters needed to call
_Destination_Requested_ are Elevator_ID and Floor.

es a call indicating that the light under one of the

destination buttons should be extinguished.

A-23

== a. Internal Response:

-- i. Writes to the appropriate output register

-- (Control_Panel_QOutput_Register) to turn off the

-- appropriate button light (Writing the floor number
-- to this register toggles the light).

-- b. External Response:

-- i. none

———————————————————— > STATES MAINTAINED <=------=~----—-roc-o——oooo-
-- --Al11 the fields in the Control_Panel_Representation
-- --The state of the lights is recognized by the hardware. If one of

- the buttons is illuminated the hardware will not cause an
-- interrupt if that button is pushed.

function New_Control_Panel
(Elevator_ID : SET.Elevator_ID_Type;
Control_Panel_Interrupt : SET.Interrupt_Num_Type)
return Control_Panel_Type;

procedure Apply_Light_Out_To

A-24

(This_Control_Panel : in Control_Par.l Tw-
Floor : in SET.Floc-._ . fes

private
Control_Panel_Interrupt_Num : SET.Interrupt_Num_Type;

task type Control_Panel_Representation is
entry Initialize
(Elevator_ID : in SET.Elevator_ID_Type;
Control_Panel_Input_Register : in SET.Register_Address_Type;
Control_Panel_Output_Register : in SET.Register_Address_Type);
entry Control_Panel_Interrupt;
entry Light_Out(Floor : in SET.Floor_Type);
for Control_Panel_Interrupt use at Contrcl_Panel_Interrupt_Num;
end Contrcl_Panel_ Representation;

--The full definition may be moved to the package body
--after implementation of the body is complete.
type Control_Panel _Type is access Control_Panel_Representation;

--pointer to a Control_Panel Representation

end Control_Panel_Manager;
A.3.6 Floor_Sensor_Manager.

with Standard_Engineering_Types;
with System;

--with Flocr_Approaching (Connector); --Move this to the package body
package Floor_Sensor_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.

A-25

Source of Stimulus: call to exported procedure
"New_Floor_Sensor."

2. Receives interrupt indicating that the elevator is
approaching a floor.

Source of Stimulus: interrupt from hardware
(Floor_Sensor_Interrupt).

RESPONSE SUMMARY:

1. Recelves a call to create a new instance of the object.
a. Internal Response:

i. Uses the interrupt value to create a new
instance of the task; it does this by assigning the
interrupt value to the Floor_Sensor_Interrupt_Num
variable before creating the new instance.

ii. Uses correspondingly named fields of the
Elevator_Pata_Array to initialize the task using
the "initialize' entry. The Elevator_Data_Array is in
the Standard_Engineering_Types package. The proper
record in the array is found by indexing using the
Elevator_ID passed in.

iii. Returns an instance of the object to the caller.

b. External Response:
i. none.
2. Receives interrupt indicating that the elevator is
approaching a floor.
a. Internal Response:
i. Reads the memory mapped eight-bit input register

(Floor_Sensor_Input_Registar) to determine which
floor is being approached.

-- b. External Response:

-- i. Invokes the _Floor_Approaching_ connector procedure
-- to indicate that the elevator is approaching a

-- floor. Parameters needed to call _Floor_Approaching_
-- are Elevator_ID and Floor.

-------------------- > STATES MAINTAINED (---==-m==-=====o==-o—mmmoomcooe

--A11 the fields in the Floor_Sensor_Representation.

function New_Floor_Sensor
(Elevator_ID : SET.Elevator_ID_Type;
Floor_Sensor_Interrupt : SET.Interrupt_Num_Type)
return Floor_Sensor_Type;

private
Floor_Sensor_Interrupt_Num : SET.Interrupt_Num_Type;
task type Floor_Sensor_Representation is
entry Initialize

(Elevator_ID : in SET.Elevatcr_ID_Type;
Floor_Sensor_Input_Register : in SET.Register_Address_Type);

entry Floor_Sensor_Interrupt;
for Floor_Sensor_Interrupt use at Floor_Sensor_Interrupt_Num;
end Floor_Sensor_Representation;

~-The full definition may be moved to the package body
--after implementation of the body is complete.

type Floor_Sensor_Type is access Floor_Sensor_Representation;
--pointer to a Floor_Sensor_Representation

end Floor_Sensor_Manager;
A.3.7 Motor_Manager.

with Standard_Engineering_Types;
package Motor_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure ‘'New_Motor."

-- 2. Receives a call to make the motor go. "Go" can be up or
-- down.

-- Source of stimulus: call to exported procedure.
-- 3. Receives a call to make the motor stop.

-- Source of stimulus: call to exported procedure.

-- 1. Receives a call to create a new instance of the object.
-- a. Internal Response:

-- i. Loads values from the Elevator_Data_Array to the

A-28

-- corresponding fields of the Motor_Representation.
-- The Elevator_Data_Array is in the

-- Standard_Engineering_Types package. The proper

-- record in the array is found by indexing using the
-- Elevator_ID passed in.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:

-- i. none.

-- 2. Receives a call to make the motor go. "Go'" can be up or
-- down.

-- a. Internal Response:

-- i. Write appropriate output command

-- (Motor_Command_Up/Down) to the motor control

-- register for this motor (Motor_Control_Register).

-- b. External Response:

-- i. none.

-- 3. Receives a call to make the motor stop.

-- a. Internal Response:

-- i. Write appropriate output command

-- (Motor_Command_Stop) to the motor control register
-- for this motor (Motor_Control_Register).

-- b. External Response:

- i. none.

-------------------- > END OBJECT REQUIREMENTS <===---===-===-moocmmo

A-29

-------------------- > STATES MAINTAINED <=-=----==--mooomooooomooooo-

--A11 the fields in the Motor_Representation.

function New_Motor(Elevator_ID : in SET.Elevator_ID_Type)
return Motor_Type;

procedure Apply_Go_To(This_Motor : in Motor_Type;
Direction : in SET.Direction_Type);

procedure Apply_Stop_To(This_Motor : in Motor_Type);

private

type Motor_Representation is reccrd

Elevator_ID : SET.Elevator_ID_Type;
Motor_Control_Register : SET.Register_Address_Type;
Motor_Command_Up : SET.Command_Byte_Type;
Motor_Command_Down : SET.Command_Byte_Type;
Motor_Command_Stop : SET.Command_Byte_Type;

end record;
-~The full definition may be moved to the package body
--after implementation of the body is complete.

type Motor_Type is access Motor_Representation;
--pocinter to a Floor_Panel_Representation

end Motor_Manager;

A-30

A.4 System_Aggregate Packages
A.4.1 Elevator System_Aggregate.

with Standard_Engineering_types;

with Weight_Sensor_Manager, Location_Panel_Manager, Control_Panel_Manager,
Floor_Sensor_Manager, Motor_Manager;

pragma elaborate (Weight_Sensor_Hanager, Location_Panel _Manager,
Control_Panel_Manager, Floor_Sensor_Manager,
Motor_Manager) ;

package Elevator_System_Aggregate is
package SET renames Standard_Engineering_types;

type Elevator_Representation is record
The_Weight_Sensor : Weight_Sensor_Manager.Weight_Sensor_Type;
The_Location_Panel : Location_Panel_Manager.Location_Panel_Type;
The_Control_Panel : Control_Panel_Manager.Control_Panel_Type;
The_Floor_Sensor : Floor_Sensor_Manager.Floor_Sensor_Type;
The_Motor : Motor_Manager.Motor_Type;
end record;

type Elevator_Type is array(SET.Elevator_ID_Type)
of Elevator_Representation;
Elevators : Elevator_Type;
end Elevator_System_Aggregate;

package body Elevator_System_Aggregate is

begin
for Current_Elevator in SET.Elevator_ID_Type loop

Elevators(Current_Elevator).The_Weight_Sensor :=
Weight_Sensor_Manager .New_Weight_Sensor(Current_Elevator);

Elevators(Current_Elevator).The_Location_Panel :=
Location-Panel_Manager.New_Location_Panel(Current_Elevator);

Elevators(Current_Elevator).The_Control_Panel :=

A-31

Control_Panel_Manager.New_Control_Panel
(Elevator_ID => Current_Elevator,
Control_Panel_Interrupt => SET.Elevator_Data_Array
(Current_Elevator) .Control_Panel_Interrupt);

Elevators(Current_Elevator).The_Floor_Sensor :=
Floor_Sensor_Manager.New_Floor_Sensor
(Elevator_ID => Current_Elevator,
Floor_Sensor_Interrupt => SET.Elevator_Data_Array

(Current_Elevator).Floor_Sensor_Interrupt);

Elevators{(Current_Elevator).The_Motor :=
Motor_Manager.New_Motor(Current_Elevator);

end loop;
end Elevator_System_Aggregate;

A.4.2 Scheduler System_Aggregate.

with Scheduler_Manager;
pragma elaborate (Scheduler_Manager);

package Scheduler_System_Aggregate is

Scheduler : constant Scheduler_Manager.Scheduler_Type :=
Scheduler_Manager.New_Scheduler;

end Scheduler_System_Aggregate;

A.4.3 Floor_Panel_Aggregate.

with Floor_Panel_Manager;

with Standard_Engineering_Types;

pragma elaborate (Floor_Panel_Manager);
package Floor_Panel_System_Aggregate is

package SET renames Standard_Engineering_types;
Flocr_Panels : constant Floor_Pamnel _Manager.Floor_Panel _Type :=

Floor_Panel_Manager.New_Floor_Panel
(Up_Interrupt => SET.Floor_Panel_Data.Up_Interrupt,

A-32

Down_Interrupt => SET.Floo-_Panel_Data.Down_Interrupt);

end Floor_Panel_System_Aggregate;

A.5 Connector/Event Procedures

A.5.1 Summons.

with Standard_Engineering_Types;
with Scheduler_System_Aggregate;
with Scheduler_Manager;

use Standard_Engineering_Types;

procedure Summons(From_Floor : in Floor_Type;
Desired_Direction : in Direction_Type) is

package SSA renames Scheduler_System_Aggregate;
package SM renames Scheduler_Manager;

begin
SM.Apply_Summons_To(This_Scheduler => SSA.Scheduler,
From_Floor => From_Floor,
Direction => Desired_Direction);

end Summons;

A.5.2 Arrives.

with Standard_Engineering _Types;

--System Level packages:
with Elevator_System_Aggregate;
with Floor_Panel_System_Aggregate;

--Object Level Packages:
with Control_Panel_Manager;
with Motor_Manager;

with Floor_Panel_Manager;

use Standard_Engineering_Types;

procedure Arrives(This_Elevator : in Elevator_ID_Type;
Floor : in Floor_Type;

A-33

Direction : in Direction_Type) is
package ESA renames Elevator_System_Aggregate;
package FPSA renames Floor_Panel_System_Aggregate;
package CPM renames Control_Panel_Manager;
package MM renames Motor_Manager;
package FPM renames Floor_Panel_Manager;

begin

MM.Apply_Stop_To(This_Motor => ESA.Elevators(This_Elevator).The_Motor);
CPM.Apply_Light_Out_To
(This_Control_Panel =>
ESA.Elevators(This_Elevator).The_Control_Panel,
Floor => Floor);
FPM.Apply_Light_Out_To (This_Floor_Panel => FPSA.Floor_Panels,

Floor => Floor,
Direction => Direction);

end Arrives;

A.5.3 Proceed.

with Standard_Engineering_Types;

--System Level packages:
with Elevator_System_Aggregate;

--Object Level Packages:
with Motor_Manager;
with Weight_Sensor_Manager;

use Standard_Engineering_Types;

procedure Proceed (This_Elevator : in Elevator_ID_Type;
Direction : in Direction_Type) is

package ESA renames Elevator_System_Aggregate;
package WSM renames Weight_Sensor_Manager;

A-34

package MM renames Motor_Manager;
begin
loop
if WSM.Return_Weight OK_From
(ESA.Elevators(This_Elevator).The_Weight_Sensor) then
MM.Apply_Go_To
(This_Motor => ESA.Elevators(This_Elevator).The_Motor,
Direction => Direction);
exit;
else
delay 5.0;

end if;

end loop;

end Proceed;

A.5.4 Destination_Requested.

with Standard_Engineering_Types;

--system level packages:
with Scheduler_System_Aggregate;

--object level packages:
with Scheduler_Manager;

use Standard_Engineering_Types;

procedure Destination_Requested(Elevator_ID : in Elevator_ID_Type;
To_Floor : in Floor_Type) is

package SSA renames Scheduler System_Aggregate;
package SM renames Scheduler_Manager;

begin
SM.Apply_Destination_Request_To
(This_Scheduler => SSA.Scheduler,

Elevator => Elevator_ID,
Floor => To_Floor);

end Destination_Requested;
A.5.5 Floor_Approaching.

with Standard_Engineering_Types;
with Elevator_System_Aggregate;
with Scheduler_System_Aggregate;
with Location_Panel_Manager;
with Scheduler_Manager;

use Standard_Engineering_Types;

procedure Floor_Approaching(This_Elevator : in Elevator_ID_Type;
Floor : in Floor_Type) is

package ESA renames Elevator_System_Aggregate;
package SSA renames Scheduler_System_Aggregate;
package LPM renames Location_Panel_Manager;
package SM renames Scheduler_Manager;

begin

LPM.Apply_Update_Location_Indicator
(This_Location_Panel =>
ESA.Elevators(This_Elevator).The_Location_Panel,
New_Floor => Floor);

SM.Apply_Floor_Approaching
(This_Scheduler => SSA.Scheduler,
Floor => Floor,
Elevator => This_Elevator);

end Floor_Approaching;

A-36

Appendix B. Ada Specifications for the Cruise Control Problem

B.1 Standard_Engineering Types

with System;
package Standard_Engineering_Types is
--(for the Cruise Control System)

--This package serves two purposes:

-- 1. It contains type definitions for parameters that are used in the
- Cruise Control control system. These parameters were mapped from
- the Object-Mapping Table which mapped all the objects defined in
- the analysis. Areas marked "PARAMETER AREA #X:" contain

- parameters that were mapped from the analysis

-- 2. It configures the design for reusability. The areas marked:

- "CONFIGURATION AREA #X:" contain data used to instantiate the
- design. The parameters that can be instantiated are:

- -The maximum speed expected of the vehicle.

- -The maximum speed at which the Cruise Control can be used.
- -The time interval at which the speed is checked and

-- updated.

- -All the hardware interface values, including:

- --Six interrupt vectors.

- --Two I/0 register addresses.

- --23 throttle control command values.

-~ This means that the Cruise Control control software system can be
-~ configured for different Cruise Control hardware systems by
-~ instantiating these values.

- -~CONFIGURATION AREA #1:

Max_Vehicle_Speed : constant :
Max_Cruise_Speed : constant :

150; --Not included in analysis.
100; --To satisfy

--metarequirement of analysis.
Update_Interval : constant duration := 1.0;
--(seconds), this interval was not
--included in the analysis.

B-1

--PARAMETER AREA #1:
subtype Speed_Type is integer
subtype Interrupt_Num_Type
subtype Register_Address_Type

subtype Command_Byte_Type

type Cruise_Control_Data_Type

--Interrupt Numbers:

range 0..Max_Vehicle_Speed;

is System.Address;
is System.Address;
is System.Address;

is record

Set_Button_Interrupt
On_Button_Interrupt
0ff_Button_Interrupt
Resume_Button_Interrupt

Accelerate_Button_Interrupt

Brake_Pedal_Interrupt

--Input/Output Registers:
Speed_Sensor_Input_Register
Throttle_Control_Output_Register

--Throttle_Control Commands:

Set_Throttle
Release_Throttle
No_Change
Decelerate_Increment_1
Decelerate_Increment_2
Decelerate_Increment_3
Decelerate_Increment_4
Decelerate_Increment_ 5
Decelerate_Increment_6
Decelerate_Increment_7
Decelerate_Increment_8
Decelerate_Increment_9
Decelerate_Increment_10
Accelerate_Increment_1
Accelerate_Increment_2
Accelerate_Increment_3
Accelerate_Increment_4
Accelerate_Increment_5
Accelerate_Increment_6
Accelerate_Increment_7
Accelerate_Increment_8
Accelerate_Increment_9

: Interrupt_Num_Type;
: Interrupt_Num_Type;
: Interrupt_Num_Type;
: Interrupt_Num_Type;

! Interrupt_Num_Type;

: Interrupt_Num_Type;

: Register_Address_Type;
: Register_Address_Type;

: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command._Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command_Byte_Type;
: Command.Byte.Type;
: Command_Byte_Type;

B-2

Acce.erate_Increment_10 : Command_Byte_Type;
end record;

Cruise_Control_Data : Cruise_Control_Data_Type;

end Standard_Engineering_Types;

package body Standard_Engineering_Types is

begin
--Configure the Cruise Control implementation by plugging in the
interrupt numbers, register addresses, and hardware commands:

--CONFIGURATION AREA #2:

- - _ - ——— = = = = - - = = = - - — -

--Interrupt Numbers:

Cruise_Control_Data.Set_Button_Interrupt := 16#B1#;
Cruise_Control_Data.On_Button_Interrupt := 16#B2#%;
Cruise_Control_Data.0ff_Button_Interrupt 1= 16#B3%;
Cruise_Control_Data.Resume_Button_Interrupt := 16#B4#;
Cruise_Control_Data.Accelerate_Button_Interrupt := 164B5%;
Cruise_Control_Data.Brake_Pedal_Interrupt 1= 16#B6%;

--Input/Output Registers:
Cruise_Control_Data.Speed_Sensor_Input_Register = 16#A1%;
Cruise_Control_Data.Throttle_Control_Output_Register := 16#A2#;

--Throttle_Control Commands:
Cruise_Control_Data.Set_Throttle := 16#10#;
Cruise_Control_Data.Release_Throttle 16#AA#;
--This one only needs
--to be different from

--the others.
Cruise_Control_Data.No_Change := 16#FF#;
Cruise_Control_Data.Decelerate_Increment_1 = 168014,
Cruise_Control _Data.Decelerate_Increment_2 1= 16#02#;
Cruise_Control_Data.Decelerate_Increment_3 = 16#03%;
Cruise_Control_Data.Decelerate_Increment_4 1= 16#044#;
Cruise_Control_Data.Decelerate_Increment_5 1= 16#05#;

B-3

Cruise_Control_Data.Decelerate_Increment_6 := 16806%;

Cruise_Control_Data.Decelerate_Increment_7 = 163#074#;
Cruise_Control_Data.Decelerate_Increment_8 := 16#08%;
Cruise_Control_Data.Decelerate_Increment_9 1= 16#09%#;
Cruise_Control_Data.Decelerate_Increment_10 := 16#0A%;
Cruise_Control_Data.Accelerate_Increment_1 = 16#81#%;
Cruise_Control_Data.Accelerate_Increment_2 1= 16#82#;
Cruise_Control_Data.Accelerate_Increment_3 1= 16#83#;
Cruise_Control_Data.Accelerate_Increment_4 1= 16#84#;
Cruise_Control_Data.Accelerate_Increment_5 := 16#85%;
Cruise_Control_Data.Accelerate_Increment_6 = 16#86%;
Cruise_Control_Data.Accelerate_Increment_7 1= 16#87#;
Cruise_Control_Data.Accelerate_Increment_8 := 16#88%;
Cruise_Control_Data.Accelerate_Increment_9 1= 16#89%;
Cruise_Control_Data.Accelerate_Increment_10 1= 16#8A#;

e e e o — - = - = - — - - —

end Standard_Engineering_Types;

B.2 Cruise Control Object_Managers
B.2.1 Throttle_Control_Manager.

with Standard_Engineering_Types;
--with: No known withing is needed from the package body.
package Throttle_Control_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
-- "New_Throttle_Control."

-- 2. Receives a call to set the throttle at the current position.

-- Source of stimulus: call to exported procedure:
. "Apply_Set_To."

B-4

3. Receives a call to change the throttle setting.

Source of stimulus: call to exported procedure:
"Apply._Change_Setting_To."

4. Receives a call to release the throttle.

Source of stimulus: call to exported procedure:
"Apply_Release_To."

RESPONSE SUMMARY:

i - " - = - - ————— " - - - -

1. Receives a call to create a new instance of the object.
a. Internal Response:

i. Loads values from the Cruise_Cont: >1_Data variable
in Standard_Engineering_Types to the corresponding
fields of the Cruise_Control_Representation.

ii. Returns an instance of the object to the caller.

b. External Response:
i. none.

2. Receives a call to set the throttle at the current
position.

a. Internal Response:

i. Write Set output command to the
Throttle_Control_Output_Register.

ii. Delay for a short period (at least as long as the read
cycle of the hardware) and write the No_Change Command
into the Throttle_Control_Output_Register.

b. External Response:
i. none.
3. Receives a call to change the throttle setting.

a. Internal Response:

i. Write the Decelerate/Accelerate command, associated with
incoming Change and Change_Amount parameters, to the

-- Throttle_Control_Output_Register.
-- ii. Delay for a short period (at least as long as the read
-- cycle of the hardware) and write the No_Change Command

-- into the Throttle_Control_Output_Register.

-- b. External Response:
-- i. none.

- 4. Receives a call to release the throttle.
-- a. Internal Response:

-- i. Write the the Release command to the
- Throttle_Control_Output_Register.

-- b. Ex*ernal Response:
-- i. none.

-------------------- > STATES MAINTAINED <-====-=~==-===-=mmomooomeooo

--All the fields in the Throttle_Control_Representation.
--The state Holding/Released state of the hardware may be
--maintained if helpful.

type Change_Type is (Deceleration, Acceleration);
subtype Change_Amount_Type is integer range 1..10;

function New_Throttle_Control return Throttle_Control_Type;

B-6

procedure Apply_Set_To
(This_Throttle_Control :

procedure Apply_Change_Setting_To
(This_Throttle_Control :
Change
Change_Amount

procedure Apply_Release_To

in Throttle_Control_Type);

in Throttle_Control_Type;

: in Change_Type;
: in Change_Amount_Type);

(This_Throttle_Control: in Throttle_Control_Type);

private

type Throttle_Control_Representation
Throttle_Control_Output_Register :
Set_Throttle
Release_Throttle
No_Change
Decelerate_Increment_1
Decelerate_Increment_2
Decelerate_Increment_3
Decelerate_Increment_4
Decelerate_Increment_5
Decelerate_Increment_6
Decelerate_Increment_7
Decelerate_Increment_8
Decelerate_Increment_9
Decelerate_Increment_10
Accelerate_Increment_1
Accelerate_Increment_2
Accelerate_Increment_3
Accelerate_Increment_4
Accelerate_Increment_5
Accelerate_Increment_6
Accelerate_Increment_7
Accelerate_Increment_8
Accelerate_Increment_9
Accelerate_Increment_10

end record;

: SET.
: SET.
: SET.
: SET.
: SET.
: SET.
: SET.
: SET.
: SET.
: SET.
: SET.
: SET.
¢ SET.
: SET.
: SET.
: SET.
: SET.
: SET.
: SET.
. SET.
: SET
: SET.
: SET.

is record
SET.Register_Address_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;
.Command_Byte_Type;
Command_Byte_Type;
Command_Byte_Type;

--The full definition may be moved to the package body
--after implementation of the body is complete.

type Throttle_Control_Type is access

B-7

Throttle_Control_Representation;

--pointer to a Throttle_Control_Representation

end Throttle_Control_Manager;
B.2.2 Speed_Sensor_Manager.

with Standard_Engineering_Types;

~-with: No known withing is needed from the package body.

package Speed_Sensor_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
-- "New_Speed_Sensor."

-- 2. Receives a call to return the current speed.

-- Source of stimulus: call to exported procedure:
-- "Return_Speed_From."

-- RESPONSE SUMMARY:

-- 1. Receives a call to create a new instance of the object.
-- a. Internal Response:

-- i. Loads values from the Cruise_Control_Data variable in
-- Standard_Engineering_Types to the corresponding fields
-- of the Cruise_Control_Representation.

-- ii. Returns an instance of the object to the caller.

-- b. External Response:
-- i. none.

-- 2. Receives a call to return the current speed.
-- a. Internal Response:

B-R

-- i. Read the Speed_Sensor_Input_Register to determine the
-- speed.

-- ii. Convert from the hexadecimal speed integer to

-- Speed_Type and return the value to the caller.

-- b. External Response:
-- i. none.

runction New_Speed_Sensor return Speed_Sensor_Type;

function Return_Speed_From
(This_Speed_Sensor : in Speed_Sensor_Type) return SET.Speed_Type;

private

type Speed_Sensor_Representation is record
Speed_Sensor_Input_Register : SET.Register_Address_Type;
end record;
--The full definition may be moved to the package body
--after implementation of the body is complete.

B-9

type Speed_Sensor_Type is access Speed_Sensor_Representation;
--pointer to a Speed_Sensor_Representation

end Speed_Sensor_Manager;
B.2.3 Buttons_Manager.

with Standard_Engineering_Types;
with System; -- since this object accepts interrupts

--with : Turn_On, Set_Speed, Accelerate, Turn_0ff, Resume, Brake;

-- This object is an event initiator, it "must” with all these
-- connectors to pass messages in responses to the events. Move
-- these "with'"s to the package body.

package Buttons_Manager is

pa~kage SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.

-- Source of Stimulus: call to exported procedure
-- "New_Buttons."

-- 2. Receives an interrupt indicating that the On Button was
-- pressed.

-- Source of Stimulus : On_Button_Interrupt.

-- 3. Receives an interrupt indicating that the O0ff Button was
-- pressed.

-- Source of Stimulus : 0ff_Buttun_Interrupt.

-- 4. Recelves an interrupt indicating that the Set Button was
-- pressed.

- Source of Stimulus : Set_Button_Interrupt.

-~ 5. Receives an interrupt indicating that the Resume Button was
-- pressed.

B-10

Source of Stimulus : Resume_Button_Interrupt.

6. Receives an interrupt indicating that the Accelerate Button
was pressed.

Source of Stimulus : Accelerate_Button_Interrupt.

7. Receives an interrupt indicating that the Brake Pedal was
pressed.

Source of Stimulus : Brake_Pedal_Interrupt.

RESPONSE SUMMARY:

--NOTE ON iNTERNAL DESIGN:
Additional tasks should be created to handle responses that
involve waiting for what may be a significant amount of time
for a connector to return. The reason is so the
Buttons_Representation task is available to receive important
interrupts like Brake_Pedal and Turn_Off.

1. Receives a call to create a new instance of the object.
a. Internal Response:

i. Use the six interrupt values in creating a new
instance of the task; it does this by assigning the
interrupt values to the Up/Down_Interrupt_Address
variables before creating the new instance.

ii. Returns an instance of the object to the caller.

b. External Response:

i. none.

2. Receives an interrupt indicating that the On Button was
pressed.

a. Internal Response:
i. None.

b. External Response:

B-11

i. Invoke the "Turn_On" Connector.
. Receives an interrupt indicating that the O0ff Button was
pressed.

a. Internal Response:
i. None.

b. External Response:

i. Invoke the "Turn_0ff" Conne-.or.

Receives an interrupt indiiacing that the Set Button was
pressed.
a. Internal Response:
i. None.
b. External Response:
i. Invoke the "Set_Speed" Connector.
. Receives an interrupt indicating that the Resume Button was
pressed.
a. Internal Response:
i. None.
b. External Response:
i. Invoke the "Resume" Connector.
Receives an interrupt indicating that the Accelerate Button
was pressed.
a. Internal Response:
i. None.
b. External Response:

i. Invoke the "Accelerate" Connector.

Receives an irterrupt indicating that the Brake Pedal was
pressed.

B-12

-- a. Internal Response:
-- i. None.

-- b. External Response:

-- i. Invoke the "Brake" Connector.

function New_Buttons

(On_Button_Interrupt : SET.Interrupt_Num _Type;
0ff_Button_Interrupt : SET.Interrupt_Num_Type;
Set_Button_Interrupt : SET.Interrupt_Num_Type;
Resume_Button_Interrupt : SET.Interrupt_Num_Type;
Accelerate_Button_Interrupt : SET.Interrupt_Num_Type;
Brake_Pedal_Interrupt : SET.Interrupt_Num_Type)

return Buttons_Type;

private
On_Button_Interrupt_Num : SET.Interrupt_Num_Type;
0ff_Button_Interrupt_Num : SET.Interrupt_Num_Type;
Set_Button_Interrupt_Num : SET.Interrupt_Num_Type;
Resume_Button_Interrupt_Num : SET.Interrupt_Num_Type;
Accelerate_Button_Interrupt_Num : SET.Interrupt_Num_Type;
Brake_Pedal_Interrupt_Num : SET.Interrupt_Num_Type;

task type Buttons_Representation i
entry Initialize;

B-13

entry On_Interrupt;

entry O0ff_Interrupt;

entry Set_Interrupt;

entry Resume_Interrupt;

entry Accelerate_Interrupt;

entry Brake_Interrupt;

for On_Interrupt use at On_Button_Interrupt_Num;

for Off_Interrupt use at Off_Button_Interrupt_Num;

for Set_Interrupt use at Set_Button_Interrupt_Num;

for Resume_Interrupt use at Resume_Button_Interrupt_Num;

for Accelerate_Interrupt use at Accelerate_Button_Interrupt_Num;

for Brake_Interrupt use at Brake_Pedal_Interrupt_Num;
end Buttons_Representation;

--The full definition may be moved to the package body
--after implementation of the body is complete.

type Buttons_Type is access Buttons_Representation;
--pointer to a Buttons_Representation

end Buttcons_Manager;
B.2.4 System_States_Manager.
with Standard_Engineering_Types;
--with: Nothing is known to need withing from the package body.
package System_States_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to create a new instance of the object.
-- Source of Stimulus: function New_System_States.
-- 2. Receives a call to save the On state as "on."

-- Source of stimulus: procedure Apply_Turn_On_To.

-- 3. Receives a call to save the engaged state as '"engaged."

B-14

Source of stimulus: procedure Apply_Engage_To.
4. Receives a call to Save the Desired Speed.
Source of stimulus: procedure Apply_Desired_Speed_To.
5. Receives a call to save the engaged state as "disengaged."
Source of stimulus: procedure Apply_Disengage_To.
6. Receives a call to save the On state as "off."
Source of stimulus: procedure Apply_Turn_0ff_To.
7. Receives a call to return the current On state.
Source of stimulus: function Return_On_State_From.
8. Receives a call to return the current Engaged state.
Source of stimulus: function Return_Engaged_State_From.
9. Receives a call to return the current Desired Speed.

Source of stimulus: function Return_Desired_Speed_From.

RESPONSE SUMMARY:

1. Receives a call to create a new instance of the object.
a. Internal Response:
i. Returns an instance of the object.

b. External Response:

i. none.

2. Receives a call to save the On state as "on."
a. Internal Response:
i. Set On_State to true.

b. External Response:
i. none.

3. Receives a call to save the engaged state as "engaged."

B-15

a. Internal Response:
i. Set Engaged_State to true.

b. External Response:
i, none.

. Receives a call to Save the Desired Speed.

a. Internal Response:
i. Assign Desired_Speed to Speed_State.

b. External Response:
i. none.

Receives a call to save the engaged state as "disengaged."
a. Internal Response:
i. Set Engaged_State to false.

b. External Response:
i. none.

. Receives a -all to save the On state as "off."

a. Internal Response:
i. Set On_State to false.

b. External Response:
i. none.

Receives a call to return the current On state.
a. Internal Response:
i. Return On_State.

b. External Response:
i. none.

Receives a call to return the current Engaged state.
a. Internal Response:

i. Return Engaged_State.

b. External Response:
i. none.

Receives a call to return the current Desired Speed.
a. Internal Response:

B-16

-- i. Return Speed_State.

-- b. External Response:
== i. nomne.

-------------------- > STATES MAINTAINED <-~----==o---mmmooomomoomooe

--Al11 the fields in the System_States_Representation.

function New_System_States return System_States_Type;
procedure Apply_Turn_On_To(This_System_States : in System_States_Type);
procedure Apply_Engage_To (This_System_States : in System_States_Type);
procedure Apply_Desired_Speed_To

(This_System_States : in System_States_Type;

Desired_Speed : in SET.Speed_Type);

procedure Apply_Disengage_ To
(This_System_States : in System_States_Type);

procedure Apply_Turn_Off_To(This_System_States : in System_States_Type);
function Return_On_State_From
(This_System_States : in System_States_Type) return boolean;

function Return_Engaged_State_From
(This_System_States : in System_States_Type) reiurn boolean;

function Return_Desired_Speed_From

B-17

(This_System_States : in System_States_Type)
return SET.Speed_Type;

private
--if no interrupts:
type System_States_Representation is record

On_State : boolean := false;
Engaged_State : boolean := false;
Speed_State : SET.Speed_Type;

end record;

--The full definition may be moved to the package body
--after implementation of the body is complete.

type System_States_Type is access System_States_Representation;
--pointer to a System_States_Representation

end System_States_Manager;
B.2.5 Timer_Manager.
with Standard. .ngineering_Types;
--with: Update; --connector, move this tc package body
package Timer_Manager is

package SET renames Standard_Engineering_Types;

-- 1. Receives a call to creaie a new instance of the object.
-- Source of Stimulus: function New_Timer.

-- 2. Time to Update.

-- Source of Stimulus: The elapse of the time interval

-- defined by Update_Interval in
-- Standard_Engineering_Types.

-- RESPONSE SUMMARY:

B-18

-- 1. Receives a call to create a new instance of the object.
-- a. Internal Response:

-- i. Initialize the task using the Time_Interval

-- parameter passed in with the Initialize entry.

- ii. Returns an instance of the object.

-- 2. Time to Update.

-- a. Internal Response:

- i. Reset the interval timer.

-- b. External Response:
-- i. Invoke the "Update" Connector.

function New_Timer return Timer_Type;

private
task type Timer_Representation is
entry Initialize(Time_Interval : in duration);

end Timer_Representation;

--The full definition may be moved to the package body
--after implementation of the body is complete.

type Timer_Type is access Timer_Representation;

B-19

-~pointer to a Timer_Representation

end Timer_Manager;

B.3 Cruise Control Aggregate Package
B.3.1 Cruise_Control_System_Aggregate.

with Standard_Engineering_types;

with Throttle_Control_Manager, Speed_Sensor_Manager,
System_States_Manager, Buttons_Manager, Timer_Manager;

pragma elaborate (Throttle_Control_Manager, Speed_Sensor_Manager,
System_States_Manager, Buttons_Manager,
Timer_Manager);

package Cruise_Control_System_Aggregate is

package SET renames Standard_Engineering_types;

type Cruise Tontrol_Representation is record
The_Throttle_Control : Throttle_Control_Manager.Throttle_Control_Type;

The_Speed_Sensor : Speed_Sensor_Manager.Speed_Sensor_Type;
The_System_States : System_States_Manager.System_States_Type;
The_Buttons : Buttons_Manager.Buttons_Type;

The_Timer : Timer_Manager.Timer_Type;

end record;

Cruise_Control : Cruise_Control_Representation;
end Cruise_Control_System_Aggregate;
package hody Cmiice Control Systemhggregate is
begin

Cruise_Control.The_Throttle_Control :=

Throttle_Control_Manager.New_Throttle_Control;

Cruise_Control.The_Speed_Sensor :=
Speed_Sensor_Manager.New_Speed_Sensor;

Cruise_Control.The_System_States :=
System_States_Manager.New_System_States;

B-20

Cruise_Control.The_Buttons := Buttons_Manager.New_Buttons

(Un_Buvton_Interrupt =>
SET.Cruise_Control_Data.0On_Button_Interrupt,
0ff _Button_Interrupt =>
SET.Cruise_Control_Data.0ff_Button_Interrupt,
Set_Button_Interrupt =>
SET.Cruise_Control_Data.Set_Button_Interrupt,
Resume_Button_Interrupt =>

SET.Cruise_Control_Data.Resume_Button_Interrupt,
Accelerate_Button_Interrupt =>

SET.Cruise_Control_Data.Accelerate_Button_Interrupt,
Brake_Pedal_Interrupt =>

SET.Cruise_Control_Data.Brake_Pedal_Interrupt);

Cruise_Control.The_Timer := Timer_Manager.New_Timer;

end Cruise_Control_System_Aggregate;

B.4 Connector/Event Procedures
B.4.1 Turn_On.

with System_States_Manager;

with Cruise_Control_Aggregate;

procedure Turn_On is

package CCA renames Cruise_Control_Aggregate;
package SSM renames System_States_Manager;

begin
SSM.Apply_Turn_On_To(CCA.Cruise_Control.The_System_States);
end Turn_On;
B.4.2 Set_Speed.
with System_States_Manager;
with Cruise_Control_Aggregate;
with Throttle_Control_Manager;
with Speed_Sensor_Manager;

procedure Set_Speed is

package CCA renames Cruise_Control_Aggregate;
package SSM renames System_States_Manager;

B-21

package TCM renames Throttle_Control_Manager;
package SS renames Speed_Sensor_Manager;

begin
--If the cruise control is turned on then
--engage it, set the throttle, get the current
--speed and save it.
if SSM.Return_On_State_From(CCA.Cruise_Control.The_System_States) then
SSM. Apply_Engage_To(CCA.Cruise_Control.The_System_States);
TCM.Apply_Set_To(CCA.Cruise_Control.The_Throttle_Control);
SSM.Apply_Desired_Speed_To
(This_System_States => CCA.Cruise_Control.The_System_States,
Desired_Speed =>
SS.Return_Speed_From(CCA.Cruise_Control.The_Speed_Sensor));
end if;

end Set_Speed;

B.4.3 Update.

with System_States_Manager;

with Cruise_Control_Aggregate;
with Throttle_Control_Manager;
with Speed_Sensor_Manager;

with Standard_Engineering_Types;
procedure Update is

package CCA renames Cruise_Control_Aggregate;
package SSM renames System_States_Manager;
package TCM renames Throttle_Control_Manager;
package SS renames Speed_Sensor_Manager;
package SET renames Standard_Engineering _Types;

Current_Speed : SET.Speed_Type :=
SS.Return_Speed_From(CCA.Cruise_Control.The_Speed_Sensor);
Desired_Speed : SET.Speed_Type :=
SSM.Return_Desired_Speed_From(CCA.Cruise_Control.The_System_States);

Speed_Difference : SET.Speed_Type;
begir

--If the cruise control is engaged and the current

B-22

--speed doesn’t equal desired speed then adjust
--the speed, delay, and check it again. Give up
--after about 10 seconds.

--NOTE: The Speed_Difference passed to
--Throttle_Control _Manager must be greater than 0
--and less than 11.

- " - - = = -~ - —— - - " - ———

for i in 1..6 loop

exit when SSM.Return_Engaged_State_From
(CCA.Cruise_Control.The_System_States) = false;

if Desired_Speed = Current_Speed then
exit;
elsif Desired_Speed < Current_Speed then --too fast

Speed_Difference := Current_Speed - Desired_Speed;
if Speed_Difference > 10 then

Speed_Difference := 10;
end if;

TCM.Apply_Change_Setting_To
(This_Throttle_Control =>
CCA.Cruise_Control.The_Throttle_Control,
Change => TCM.Deceleration,
Change_Amount => Speed_Difference);

else --too slow
Speed_Difference := Desired_Speed - Current_Speed;
if Speed_Difference > 10 then
Speed_Difference := 10;
end if;

TCM.Apply_Change_Setting_To
(This_Throttle_Control =>
CCA.Cruise_Control.The_Throttle_Control,
Change => TCM.Acceleration,
Change_Amount => Speed_Difference);
end if;

if 1 /= 6 then
delay SET.Update_Interval; --seconds
Current_Spned :=
SS.Return_Speed_From(CCA.Cruise_Control.The_Speed_Sensor);

B-23

end if;
end loop;

end Update;

B.4.4 Brake.

with System_States_Manager;
with Throttle_Control_Manager;
with Cruise_Control_Aggregate;
procedure Brake is

package CCA renames Cruise_Control_Aggregate;
package SSM renames System_States_Manager;
package TCM renames Throttle_Control_Manager;

begin

TCM.Apply_Release_To(CCA.Cruise_Control.The_Throttle_Control);
SSM.Apply_Disengage To(CCA.Cruise_Control.The_System_States);
end Brake;

B.4.5 Resume.

with System_States_Manager;
vwith Cruise_Control_Aggregate;
procedure Resume is

package CCA renames Cruise_Control_Aggregate;
package SSM renames System_States_Manager;

begin
SSM.Apply_Engage_To(CCA.Cruise_Control.The_System_States);
end Resume;

B.4.6 Accelerate.

with System_States_Manager;
with Cruise_Control_Aggregate;
with Throttle_Control_Manager;
procedure Accelerate is

B-24

package CCA renames Cruise_Control_Aggregate;
package SSM renames System_States_Manager;
package TCM renames Throttle_Control_Manager;

begin

if SSM.Return_Engaged_State_From
(CCA.Cruise_Control.The_System_States) then
TCM.Apply.Change_Setting_To
(This_Throttle_Control => CCA.Cruise_Control.The_Throttle_Control,
Change => TCM.Acceleration,
Change_Amount => 1);
end if;

end Accelerate;

B.4.7 Turn_Off.

with System_States_Manager;
with Cruise_Control_Aggregate;
with Throttle_Control_Manager;
procedure Turn _Off is

package CCA renames Cruise_Control_Aggregate;
package SSM renames System_States_Manager;
package TCM renames Throttle_Control_Manager;
begin
TCM.Apply_Release_To(CCA.Cruise_Control.The_Throttle_Control);
SSM.Apply_Disengage_To(CCA.Cruise_Control.The_System_States);
SSM.Apply_Turn_0ff_To (CCA.Cruise_Control.The_System_States);

end Turn_0ff;

B-25

Appendix C. Ada Package Bodies for Simulation Implementation
of the Elevator Problem

This appendix contains the implementation of the package bodies from the
elevator design problem in Chapter 4 and Appendix A. This implementation is dis-
cussed in Section 4.6. Not included are the main driver and the simulation screen
driver which were developed for the purpose of simulating the elevator controller on

a personal computer.

The simulator works as follows: The simulation driver gets keyboard inputs
from the operator, interprets them, and calls the appropriate object marager. This
simulates the receiving of interrupts caused by the pushing of elevator summons and
destination buttons. The object managers had to be modified somewhat to export
operations to receive stimulus in this manner. The simulation screen driver draws a
picture of the elevators on the screen and exports two kinds of suffered operations:
an operation to move one of the elevators up and down, and operations to turn the

button lights on and off.

C.1 Floor_Panel_Manager.

with Summons, Elevator_Screen_Control;
package body Floor_Panel_Manager is

package ESC renames Elevator_Screen_Control;
use Standard_Engineering_Types;

task body Floor_Panel_Representation is

Local_Floor : SET.Floor_Type;
Local_Direction : SET.Direction_Type;
begin

C-1

loop
select

accept Up_Interrupt(From_Floor : in SET.Floor_Type) do
Local_Floor := From_Floor;
end Up_Interrupt;

--Can’t have a up summons from the top floor:
if not (Local_Floor = SET.Floor_Type’last) then
Summons (Local_Floor,Up);
ESC.Change_Floor_Panel_Light_To(On, Local_Floor, Up);

end if;
or
accept Down_Interrupt(From_Floor : in SET.Floor_Type) do
Local_Floor := From_Floor;

end Down_Interrupt;

--Can’t have a down summons from the bottom floor:
if not (Local_Floor = SET.Floor_Type’first) then
Summons (Local _Floor,Down);
ESC.Change_Floor_Panel_Light_To(On, Local_Floor, Down);
end if;

or
accept Light_Out(Floor : in SET.Floor_Type;
Direction : in SET.Direction_Type) do

Local_Floor Floor;
Local_Direction := Direction;
end Light_Out;

ESC.Change_Floor_Panel_Light_To(0ff, Local_Floor,
Local_Direction);

end select;
end loop;

end Floor_Panel_Representation;

- o = D - — e = e R e - - e . - " = = = e ——— -

function New_Floor_Panel return Floor_Panel_Type is
Floor_Panel : Floor_Panel_Type;

begin
Floor_Panel := new Floor_Panel_Representation;
return Floor_Panel;

end New_Floor_Panel;

procedure Apply_Light_Out_To(This_Floor_Panel : in Floor_Panel_Type;
Floor : in SET.Floor_Type;
Direction : in SET.Direction_Type)

begin
if Direction = SET.Up then

--There is no up summons light at the top floor:
if Floor /= SET.Floor_Type’last then
This_Floor_Panel.Light_Out(Floor,SET.Up);
end if;
else --down

--There is no down summons light at the bottom floor:
if Floor /= SET.Floor_Type’first then
This_Floor_Panel.Light_Out(Floor,SET.Down) ;
end if;
end if;

end Apply_Light_Out_To;

procedure Summons(This_Floor_Panel : in Floor_Panel_Type;

Floor : in SET.Floor_Type;
Direction : in SET.Direction_Type) is

begin

if Direction = up then
This_Floor_Panel.Up_Interrupt(Floor);
else

This_Floor_Panel.Down_Interrupt(Floor);
end if;

C-3

is

end Summons;

end Floor_Panel_Manager;

C.2 Weight_Sensor_Manager.

package body Wa2ight_Sensor_Manager is

function New_Weight_Sensor
(Elevator_ID : SET.Elevator_ID_Type) return Weight_Sensor_Type is

Weight_Sensor : Weight_Sensor_Type;
begin
Weight_Sensor := new Weight_Sensor_Representation;

return Weight_Sensor;

end New_Weight_Sensor

function Return_Weight_ OK_From
(This_Weight_Sensor : Weight_Sensor_Type) return boolean is

begin
--Dummy routine for this simulation:
return true;

end Return_Weight_ OK_From;

end Weight_Sensor_Manager;

C.3 Scheduler_Manager.

with Arrives, Proceed;
package body Scheduler_Manager is

C-4

use Standard_Engineering_Types;

type Floor_Stops is array (SET.Floor_Type) of boolean;

type Schedule_Record is record

Next_Stop : SET.Floor_Type := SET.Floor_Type’first;
Current_Floor : SET.Floor_Type := SET.Floor_Type’first;
Direction : SET.Direction_Type := SET.Parked;
Motor_On : boolean := false;

Boarding * boolean := false;

end record;

type Elevator_Array is array(1..SET.Elevator_ID_Type’Last) of
Schedule_Record;
type Summmons_Waiting_Record is record
Waiting_Up : beolean := false;
Waiting_Down : boolean := false;
end record;

type Floor_Summons_Array is array (SET.Elevator_ID_Type) of
Summons_Waiting_Record;

type Summons_Waiting_Array is array (SET.Floor_Type) of
Floor_Summons_Array;

type Destination_Waiting_Array is array (SET.Elevator_ID_Type) of
Floor_Stops;

--Finally, the Scheduler representation:
type Scheduler_Representation is record
Schedule : Elevator_Array;
Waiting_Summons : Summons_Waiting_Ar:ay;
Waiting_Destination : Destination_Waiting_Array;
end record;

--This routine sets the "Next_Stop" and

C-5

~-"Direction" fields of the Scheduler to
--set it up for its next action.

procedure Set_Next(This_Scheduler : in Scheduler_Type;
Elevator : in SET.Elevator_ID_Type) is

Current_Direction : SET.Direction_Type :=
This_J3cheduler.Schedule{(Elevator) .Direction;

Current_Floor : SET.Floor_Type :=
This_Scheduler.Schedule(Elevator).Current_Floor;

Floor_Set : boolean := false;

procedure Search_Up is

--Search up from the current floor, the next destination
--found or summons going in the up direction becomes the
~-next floor, if none are found we search for a summons
--going down starting at the top floor:

begin
for i in Current_Floor + 1.,.SET.Floor_Type’last loop
if (This_Scheduler.Waiting_Destination(Elevator){(i) = true) or else
(This_Scheduler.Waiting_Summons(i) (Elevator).Waiting Up = true) then
This_Schedu_er.Schedule(Elevator) .Next_Stop := i;
This_S~heduler.Schedule(Elevator).Direction := SET.Up;
Floor_Set := true;
exit;
end if;
end loop;
if not Floor_Set then
for i in reverse Current_Floor + 1..SET.Floor_Type’last loop

if (This_Scheduler.Waiting_Summons(i) (Elevator).
Waiting_Down = true) then

This_Scheduler.Schedule(Elevator).Next_Stop := ij;
This_Scheduler.Schedule(Elevator).Direction := SET.Up;
Floor_Set := true;
exit;

end if;

end loop;
end if;

end Search_Up;

procedure Search_Down is

- ——— - " " —————— e -~ = = - - -

--Search Down from the current floor, the next destination
--found or Summons going down the down direction becomes the
--next floor, if none are found we search for a summons
--going up starting at the bottom floor:

- - — - = —— " - - -

begin
for i in reverse SET.Floor_Type’first..Current_Floor - 1 loop
if (This_Scheduler.Waiting Destination(Elevator)(i) = true) or else
(This_Scheduler.Waiting_Summons(i) (Elevator).
Waiting_Down = true) then

This_Scheduler.Schedule(Elevator).Next_Stop := i;

This_Scheduler.Schedule(Elevator).Direction := SET.Down;
Floor_Set := true;
exit;
end if;
end loop;

if not Floor_Set then
for i in SET.Floor_Type’first..Current_Floor - 1 loop
if (This_Scheduler.Waiting_Summons(i)(Elevator).
Waiting Up = true) then
This_Scheduler.Schedule(Elevator) .Next_Stop := i;
This_Scheduler.Schedule(Elevator).Direction := SET.Down;
Floor_Set := true;
exit;
end if;
end loop;
end if;

end Search_Down;

begin
--Always catch all scheduled floors in the current
--direction first. Park the elcvator if there are
--no more floors scheduled for it:

if Current_Direction = SET.Down then
Search_Down;

C-7

if not Floor_Set then
Search_Up;
end if;
if not Floor_Set .nen
This_Scheduler.Schedule(Elevator).Direction := SET.Parked;
end if;

else --Curruvat_Direction = SET.Up or SET.Parked
Search_Up;
if not Floor_Set then
Search_Down;
end if;
if not Floor_Set then
This_Scheduler.Schedule(Elevator).Direction := SET.Parked;
end if;
end if;

end Set_Next;

function New_Scheduler return Scheduler_Type is
Local_Scheduler : Scheduler_Type;
begin

Local_Scheduler := new Scheduler_Representation;
return Local_Scheduler;

end New_Scheduler;

procedure Apply_Summons_To(This_Scheduler : in Scheduler_Type;
From_Floor : in SET.Floor_Type;
Direction : in SET.Direction_Type) is

--This routine decides which elevator to schedule for
--the summons, and sends it on its way if it is not
--being used:

C-8

Number_Candidates : integer := 0;

type This_Candidate is record
Candidate : boolean := false;

Distance : integer := 2000;
end record;
Closest : integer := 2000;

Closest_One : SET.Elevator_ID_Type;

type Candidate_List is array(
SET.Elevator_ID_Type) of This_Candidate;

Candidates : Candidate_List;
Last_Direction : SET.Direction_Type;
Idle_Elevator : boolean := false;

begin

~--check for parked elevators at this floor:
for i in reverse SET.Elevator_ID_Type loop
if (This_Scheduler.Schedule(i).Direction = SET.Parked) and then
(This_Scheduler.Schedule(i).Current_Floor = From_Floor) then
Idle_Elevator := true;
Closest_One := i;
exit;
end if;
end loop;

--check for parked elevators:
if not Idle_Elevator then
for i in reverse SET.Elevator_ID_Type loop
if This_Scheduler.Schedule(i).Direction = SET.Parked then
Idle_Elevator := true;
Closest_One := i;
exit;
end if;
end loop;
end if;

- - - - — - - R e = = = = - .

--Since all the elevators are being used,
~-schedule one using heuristics of trying to
--find the closest one going in the right

C-9

--direction:

- e - -~ " — e v e = - - -

- - - - ———— T ———— ———— - - - - -

--Determine how far each elevator is from the
--floor where someone is waiting:
for i in SET.Elevator_ID_Type loop
Candidates(i).distance :=
This_Scheduler.Schedule(i).Current_Floor - From_Floor;
end loop;

--Establish candidate elevators to go answer
--the summons as those going toward the summons
--floor:
for i in SET.Elevator_ID_Type loop
if (This_Scheduler.Schedule(i).Direction = SET.Up) and
Candidates(i).distance <= O then
Candidates(i).Candidate := true;
Number_Candidates := Number_Candidates + 1;
elsif (This_Scheduler.Schedule(i).Direction = SET.Down) and
Candidates(i).distance >= 0 then

Candidates(i).Candidate := true;
Number_Candidates := Number_Candidates + 1;
elsif This_Scheduler.Schedule(i).Direction = SET.Parked then
Candidates(i).Candidate := true;
Number_Candidates := Number_Candidates + 1;
end if;
end loop;

- - e — - —————————————————— - = - -

--If no candidates then send the closest
--elevator.
if Number_Candidates = O then
for i in SET.Elevator_ID_Type loop
if abs(Candidates(i).distance) < Closest then
Closest_one := i;
Closest := Candidates(i).distance;
end if;
end loop;

C-10

- . - ———— -

elsif Number_Candidates = 1 then
for i in SET.Elevator_ID_Type loop
if Candidates(i).Candidate = true then
Closest_One := i;
exit;
end if;
end loop;

--If more that one candidate then send the
--closest of these:
else --more than one candidate
for i in SET.Elevator_ID_Type loop
if (Candidates(i).Candidate = true) and then
(abs(Candidates(i).distance)) <= Closest then

Closest_one := i;
Closest := Candidates(i).distance;
end if;
end loop;
end if;
end if;

--An elevator is selected so now we need to
--schedule it. Assign the summons to the summons
--table. If the assigned elevator is already at
--the right floor and parked, then don’t schedule
--it, just call the connector "Arrives:"
if (From_Floor = This_Scheduler.Schedule(Closest_One).Curreut_Floor)
and then
(This_Scheduler.Schedule(Closest_One).Direction = parked) then

Arrives(Closest,From_Floor, Direction);
This_Scheduler.Schedule(Closest_One).Motor On := false;

else --schedule summons and call elevator if not being used:

if Direction = SET.Up then
This_Scheduler.Waiting_Summons(From_Floor)

C-11

(Closest_One).Waiting_Up := true;
else --down
This_Scheduler.Waiting_Summons(From_Floor)
(Closest_One) .Waiting_Down := true;
end if;

Last_Direction := This_Scheduler.Schedule(Closest_One).Direction;
Set_Next(This_Scheduler,Closest_0One);

--If the motor is off and it’s not stopped for
--boarding then dispatch the elevator:
if (This_Scheduler.Schedule(Closest_One).Motor_On = false) and then
(This_Scheduler.Schedule(Closest_One) .Eoarding = false) then

Proceed(Closest_One,
This_Scheduler.Schedule(Closest_One) .Direction);
This_Scheduler.Schedule(Closest_0One) .Motor_On := true;

end if;
end if;

end Apply_Summons_To;

- - - - — > o~ = P = e - -

procedure Apply_Destination_Request_To
(This_Scheduler : in Scheduler_Type;
Elevator : in SET.Elevator_ID_Type;
Floor : in SET.Floor_Type) is

begin

This_Scheduler.Waiting_Destination(Elevator)(Floor) := true;

--If the motor is off and it’s not stopped for
--boarding then dispatch the elevator:
if (This_Scheduler.Schedule(Elevator).Motor_On
(This_Scheduler.Schedule(Elevator) .Boarding
Proceed(Elevator,
This_Scheduler.Schedule(Elevator).Direction);
This_Scheduler.Schedule(Elevator).Motor_On := true;
end if;

false) and then
false) then

end Apply_Destination_Request_To;

- - - - ———— . ———— " —————— = = = = — . - -

procedure Apply_Floor_Approaching
(This_Scheduler : in Scheduler_Type;

Floor : in SET.Floor_Type;
Elevator : in SET.Elevator_ID_Type) is
Summons_Direction : SET.Direction_Type;
Summons_Waiting_Up : boolean := This_Scheduler.Waiting_Summons(Floor)
(Elevator).Waiting_Up;
Summons_Waiting_Down : boolean := This_Scheduler.

Waiting_Summons(Floor)
(Elevator) .Waiting_Down;

begin
This_Scheduler.Schedule(Elevator) .Current_Floor := Floor;

--Stop if scheduled to do so:
if This_Scheduler.Schedule(Elevator).Next_Stop = Floor then

--set things up for the next stop:
Set_Next(This_Scheduler,Elevator);
Summons_Direction := This_Scheduler.Schedule(Elevator).Direction;

- - o ——— - T = = ——— -

--Clear schedule of appropriate summons and
--destinations. Want to catch at least one
--summons if one exist no matter which way
--we came from. Look from the direction we
--came from first:
if Summons_Direction = Down then
if Summons_Waiting_Down then

C-13

This_Scheduler.Waiting_Summons(Floor)

(Elevator) .Waiting_Down := false;
Summons_Direction := Down;
Summons_Waiting_Down := false;

elsif Summons_Waiting_Up then
This_Scheduler.Waiting_Summons(Floor)
(Elevator) .Waiting Up := false;

Summons_Direction := Up;
Summons_Waiting _Up := false;
end if;

else
if Summons_Waiting_Up then
This_Scheduler.Waiting_Summons(Floor)
(Elevator).Waiting_Up :
Summons_Direction := Up;
Summons_Waiting _Up := false;
elsif Summons_Waiting_Down then
This_Scheduler.Waiting_Summons(Floor)
(Elevator).Haiting_Down := false;
Summons_Direction := Down;
Summons_Waiting_Down := false;
end if;
end if;

false;

~-clear destination request:
This_Scheduler.Waiting_Destination(Elevator)(Floor) := false;

~-stop the elevator:
Arrives(Elevator,Floor, Summons_Direction);
This_Scheduler.Schedule(Elevator).Boarding :
This_Scheduler.Schedule(Elevator).Motor_0On :

true;
false;

--Waiting for boarding if trips to more
--floors are pending:

if This_Scheduler.Schedule
(Elevator).Direction /= SET.Parked then
delay 6.0; --so passengers can board before departure
end if;

--Reset for the next floor in case new requests

C-14

--were added to the schedule during boarding.
--Have the elevator continue now to the next
--stop if requests are pending:
Set_Next(This_Scheduler,Elevator);
if This_Scheduler.Schedule
(Elevator).Direction /= SET.Parked then

Proceed(Elevator,
This_Scheduler.Schedule(Elevator).Direction);
This_Scheduler.Schedule(Elevator).Motor_On := true;
end if;
This_Scheduler.Schedule(Elevator).Boarding := false;

end if;
end Apply_Floor_Approaching;

end Scheduler_Manager;

C.4 Location_Panel_Manager.

with Elevator_Screen_Control;
package body Location_Panel_Manager is

package ESC renames Elevator_Screen_Control;
use Standard_Engineering_Types;

function New_Location_Panel(Elevator_ID : SET.Elevator_ID_Type)
return Location_Panel_Type is

Local_Loc_Panel : Location_Panel_Type;

begin
Local_Loc_Panel := new Location_Panel_Representation;
Local_Loc_Panel.Elevator_ID := Elevator_ID;
Local_Loc_Panel.Current_Floor_Indicator_Lit :=

SET.Floor_Type’first;

return Local_Loc_Panel;

-nd New_Location_Panel;

C-15

procedure Apply_Update_Location_Indicator
(This_Location_Panel : in Location_Panel_Type;
New_Floor : in SET.Floor_Type) is

Move_Direction : SET.Direction_Type;
begin

if New_Floor > This_Location_Panel.Current_Floor_Indicator_Lit then
Move_Direction := Up;
elsif New_Floor < This_Location_Panel.Current_Floor_Indicator_Lit then

Move_Direction := Down;
else

return; --nowhere to move;
end if;

This_Location_Panel.Current_Floor_Indicator_Lit := New_Floor;

--Call the elevator simulation screen telling
--it to move the elevator:

ESC.Move_Elevator (Direction => Move_Direction,
Elevator.ID => This_Location_Panel.Elevator_ID);

end Apply_Update_Location_Indicator;

end Location_Panel_Manager;
C.5 Control_Panel Manager.

with Destination_Requested;
with Elevator_Screen_Control;
package body Control_Panel_Manager is

package ESC renames Elevator_Screen_Control;
use Standard_Engineering_Types;

C-16

function New_Control_Panel (Elevator_ID : SET.Elevator_ID_Type)
return Control_Panel_Type is

Local_Control_Panel : Control_Panel_Type;

begin
Local_Control_Panel := new Control_Panel_Representation;
Local_Control_Panel.Elevator_ID := Elevator_ID;
return Local _Control_Panel;

end New_Control_Panel;

procedure Apply_Light_Out_To
(This_Control_Panel : in Control_Panel_Type;
Floor : in SET.Floor_Type) is

begin

--Call the elevator simulation screen telling
--it to turn-off a button light:
ESC.Change_Elevator_Panel_Light_To(
0ff,
This_Control_Panel.Elevator_ID,
Floor);

end Apply_Light_Out_To;

--subprogram added for simulation implementation:
procedure Destination_Selected(Elevator_ID : SET.Elevator_ID_Type;
Floor : SET.Floor_Type) is

begin
Destination_Requested(Elevator_ID,Floor);

ESC.Change_Elevator_Panel_Light_To(On, Elevator_ID, Floor);

end Destination_Selected;

end Control_Panel _Manager;

C.6 Floor_Sensor_Manager.

with Floor_Approaching;
package body Floor_Sensor_Manager is

-------------------- > EXPORTED OPERATIONS <------=-===-mccemmnoncooooe

task body Floor_Sensor_Representation is

--Floor Sensor was retained as a task in the
--simulation to prevent the motor task from having
--to wait for the Scheduler to board passengers;
-~this task waits instead:

Elevator : SET.Elevator_ID_Type;
Floor_Number : SET.Floor_Type;

begin

accept Initialize (Elevator_ID : in SET.Elevator_ID_Type) do
Elevator := Elevator_ID;
end Initialize;

loop
accept Floor_Sensor_Interrupt(Floor : in SET.Floor_Type) do
Floor Number := Floor;
end Floor_Sensor_Interrupt;
Floor_Approaching(Elevator,Floor_Number);
end loop;

end Floor_Sensor_Representation;

function New_Floor_Sensor (Elevator_ID : SET.Elevator_ID_Type)
return Floor_Sensor_Type is
Floor_Sensor : Floor_Sensor_Type;

begin

C-18

Floor_Sensor := new Floor_Sensor_Representation;
Floor_Sensor.Initialize(Elevator_ID);
return Floor_Sensor;

end New_Floor_Sensor;

--procedure added for the simula+i_n implementation:
procedure Floor_Approacing(Floor_Sensur : in Floor_Sensor_Type;
Floor : in SET.Floor_Type) is

begin
Floor_Sensor.Floor_Sensor_Interrupt(Floor);
end Floor_Approacing;

end Floor_Sensor_Manager;

C.7 Motor_-Manager.

with Floor_Sensor_Manager, Elevator_System_Aggregate;
package body Motor_Manager is

use Standard_Engineering_Types;

package ESA renames Elevator_System_Aggregate;

--This task simulates the action of the motor and
--the movement of the elevator. It notifies the
--Floor Sensor when a floor is approaching:

Elevator . : SET.Elevator_ID_Type;
Current_Floor : SET.Floor_Type := SET.Floor_Type’first;
Floor_Delay : duration := 2.0;

Current_Direction : SET.Direction_Type := SET.parked;
begin
accept Initialize (Elevator_ID : in SET.Elevator_ID_Type) do

Elevator := Elevator_ID;
end Initialize;

loop
select --stopped, waiting for motion command:

accept Motor_Command_Up;
if Current_Floor /= SET.Floor_Type’last then
Current_Floor := Current_Floor + 1;
end if;
Current_Direction := SET.Up;
Floor_Sensor_Manager.Floor_Approacing(
ESA.Elevators(Elevator).The_Floor_Sensor,
Current_Floor);

or
accept Motor_Cuumand_Down;
if Current_Floor /= SET.Floor_Type’first then
Current_Floor := Current_Floor - 1;
end if;
Current_Direction := SET.Down;
Floor_Sensor_Manager.Floor_Approacing(
ESA.Elevators(Elevator).The_Floor_Sensor,
Current_Floor);

or --to avoid lock up if this one is called when already stopped:
accept Motor_Command_Stop;

end select;

--motion loop:
if Current_Direction /= SET.Parked then

loop
select
accept Motor_Command._Stop;
Current_Direction := SET.Parked;
exit;

--These next two accepts are included here to avoid
--lockup if move commands are received when the elevator

--is already moving:

e Y - = - G TR MR A . e A - e W

or
accept Motor_Command_Up;

or

C-20

accept Motor_Command_Down;

or
delay Floor_Delay;
--Increment floor and keep moving,
--reverse directions if at top moving
-=-up or bottom moving down:
if Current_Direction = SET.Up then
if Current_Floor /= SET.Floor_Type’last then
Current_Floor := Current_Floor + 1;
else
Current_Floor := Current_Floor - {;
Current_Direction := SET.Down;

end if;
else
if Current_Floor /= SET.Floor_Type’first then
Current_Floor := Current_Floor - 1;
else
Current_Floor := Current_Floor + 1;
Current_Direction := SET.Up;
end if;
end if;

Floor_Sensor_Manager.Floor_Approacing(
ESA.Elevators(Elevator).The_Floor_Sensor,
Current_Floor);

end select;
end loop;
end if;
end loop;
end Motor_Representation;

function New_Motor(Elevator_ID : in SET.Elevator_ID_Type)
return Motor_Type is
Motor : Motor_Type;

begin
Motor := new Motor_Representation;
Motor.Initialize(Elevator_ID);
return Motor;

C-21

end New_Motor;

- - - —— - —————— = " - = = = = - - - - -

procedure Apply_Go_To(This_Motor : in Motor_Type;
Direction : in SET.Direction_Type) is

begin
if Direction = Down then
This_Motor.Motor_Command_Down;
else
This_Motor.Motor_Command_Up;
end if;
end Apply_Go_To;

procedure Apply_Stop_To(This_Motor : in Motor_Type) is
begin

This_Motor.Motor_Command_Stop;
end Apply.Stop._To;

end Motor_Manager;

C-22

Bibliography

AFIT, 1990. Air Force Institute of Technology (AFIT). Object Oriented Require-
ments Determination, AFIT/ENG Working Paper, sic. Technical Report, Air
Force Institute of Technology (AFIT), 1990.

Batory and others, 1988. Batory, D S, et al. Construction of File Management Sys-
tems from Software Components. Technical Report, University of Texas, Austin,
TX, 1988. Technical Report TR-88-36.

Berard, 1990b. Berard, Edward. “Object Oriented Design.” Unpublished Paper
Sent Directly from Mr Berard via Electronic Mail, July 1990.

Berard, 1990a. Berard, Edward. “Object Oriented Domain Analysis.” Posted
in the comp.object newgroup of a public bulletin board, Message-ID:
637@ajpo.sei.cmu.edu, January 1990.

Biggerstaff and Richter, 1987. Biggerstaff, Ted and Charles Richter. “Reusability
Framework, Assessment, and Directions,” IEEE Software, 4(2):41-49 (March
1987).

Booch, 1983. Booch, Grady. Software Engineering with Ada. The Ben-
jamin/Cummings Publishing Company, Inc., 1983.

Booch, 1987. Booch, Grady. Software Components with Ada. The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

Booch, 1991. Booch, Grady. Object Oriented Design with Applications. The Ben-
jamin/Cummings Publishing Company, Inc., 1991 (sic).

Brown and Quanrud, 1988. Brown, G R and R B Quanrud. “The Generic Archi-
tecture Approach To Reusable Software.” In Proceedings of the Sirth National
Conference On Ada Technology, Arlington, VA, Mar 14-17, pages 390-394,
1988.

CCSO0, 1988. Command & Control Systems Office (CCSO). Reuse of Ada Software
Modules. Technical Report, CCSO, Standard Systems Center, AFCC, USAF,
1988.

D’Ippolito, 1989. D’Ippolito, Richard S. “Using Models in Software Engineering.”
In Proceedings of Tri-Ada-89, Pittsburgh, PA, pages 256-264, October 1989.

DoD-STD 2167A, 1985. DoD-STD 2167A. M:ilitary Standard, Defense System Soft-
ware Development, February 1985.

EVB, 1989. EVB Software Engineering Inc. Object Oriented Requirements Analysis.
Frederick, MD, 1989. Slides From an OORA Course.

Goyden, 1989. Goyden, Maj Mike. “The Software Lifecycle with Ada: A Command
and Control Application.” In Pioceedings of Tri-Ada-89, Pittsburgh, PA, pages
40-55, October 1989.

BIB-1

Kaiser and Garlan, 1987. Kaiser, Gail E and David Garlan. “Melding Software Sys-
tems from Reusable Building Blocks,” IEEE Software, 4(4):17-24 (July 1987).

Kiem, 1989. Kiem, Eric. “The KEYSTONE System Design Methodology,” ACM
Ada Letters, 9(5):101-108 (July/August 1989).

Ladden, 1989. Ladden, Richard M. “A Survey of Issues to be Considered in the
Development of an Object-Oriented Development Methodology for Ada,” ACM
Ada Letters, 9(2):78-89 (March/April 1989).

Rissman and others, 1988. Lee, K J, et al. An OOD Paradigm for Flight Simulators,
2nd Edition, CMU/SEI-88-TR-80. Technical Report, Software Engineering
Institute, 1988.

Rissman and others, 1989a. Lee, Kenneth J and Michael S Rissman. An Object-
Oriented Solution Ezample: A Flight Simulator Electrical System CMU/SEI-
89-TR-5. Technical Report, Software Engineering Institute, 1989.

March, 1989. March, Steven G. An Object Oriented Analysis Method For Ada and
Embedded Systems. MS thesis, AFIT/GCS/ENC/89D-1, Air Force Institute of
Technology, 1989 (ADA202579).

Meyer, 1987. Meyer, Bertrand. “Reusability: The Case for Object-Oriented De-
sign,” IEEE Software, 4(2):50-64 (March 1987).

Parnas, 1976. Parnas, David L. “On the Design and Development of Program Fam-
ilies,” IEEE Transactions on Software Engineering, SE-2(1):1-9 (March 1976).

Plinta and Lee, 1989. Plinta, Charles and Kenneth Lee. “A Model Solution for C*J
Domain.” In Proceedings of Tri-Ada-89, Pittsburgh, PA, pages 56-67, October
1989.

Rissman and others, 1989b. Plinta, Charles, et al. A Model Solution for C3I Mes-
sage Translation and Validation, CMU/SEI-89-TR-12. Technical Report, Soft-
ware Engineering Institute, 1989.

Pressman, 1987. Pressman, Roger S. Software Engineering: A Practitioner’s Ap-
proach (2nd Edition). McGraw-Hill, Inc., 1987.

Prieto-Diaz, 1987. Prieto-Diaz, Rubén. “Domain Analysis For Reusability.” In Pro-
ceedings of COMPSAC’87, pages 23-29, 1987.

Rajlich, 1984. Rajlich, R. “SNAP - A Language and Environment for Programming-
in-the Large.” In Proceedings of the IEEE Workshop on Languages for Automa-
tion, pages 192-195, 1984.

Rajlich, 1985. Rajlich, R. “Paradigms for Design and Implementation In Ada,”
Communications of the ACM, 28(7):718-727 (July 1985).

Rissman and others, 1989¢c. Rissman, M., et al. Personnel meetings with members
of the Software Architectures Engineering Project team of the Software Engi-
neering Institute during 1989 and 1990.

BIB-2

Ruegsegger, 1988. Ruegsegger, Ted. “Making Reuse Pay: The SIDPERS-3 RAPID
Center,” IFEE Communications, 26(8):16-.4 (August 1988).

Seidewitz, 1989. Seidewitz, E. “General Object-Oriented Software Development:
Background and Experience,” The Journal of Systems and Software, 9:95-108
(1989).

Smith, 1990. Smith, Connie U. Performance Engineering of Software Systems. The
Addison-Wesley Publishing Company, 1990.

SofTech, 1985. SofTech Inc. Ada Reusability Guidelines. Technical Report, SofTech,
Inc, 1985.

Sommerville, 1989. Sommerville, lan. Software Engineering (3rd Edition). Addison-
Wesley Publishing Company, 1989.

St. Dennis, 1987. St. Dennis, Richard J. “Reusable Ada Software Guidelines.” In
Proceedings of the Twentieth Annual Hawair International Conference on Sys-
tems Sciences, pages 513-520, 1987.

Tracz, 1986. Tracz, William J. “Why Reusable Software Isn’t.” In Proceedings of the
Workshop on Future Directions in Computer Architecture and Software, pages
171-177, 1986.

Umphress, 1990. Umphress, David A. “O0A vs OOD.” Posted in the comp.object
newgroup of a public bulletin board, Message-1D: 1675@blackbird.afit.af.mil,
1990.

BIB-3

Vita
Captain Kelly L. Spicer was born on 19 June 1955 in Alexandria, Virginia. He
graduated from Palo Verde High School in Tucson, Arizona, in 1973. He graduated
with a Bachelor of Science degree in Renewable Natural Resources from the Univer-
sity of Arizona in 1982. He graduated from the Air Force Officer Training School
in 1984. He graduated from Central State University in Oklahoma with a second

Bachelor of Science degree (computer science) in 1988.

Captain Spicer was assigned to the Command and Control Systems Office
(CCSO) (Air Force Communications Command) at Tinker AFB, OK, in 1985. While
there, he served as part of an Ada software development team who developed the
software for the Standard Automated Remote to AUTODIN Host (SARAH) mes-
sage preparation and communication system. Captain Spicer entered the Air Force

Institute of Technology, School of Engineering, in May of 1989.

Permanent address: 8100 Calle Potrero
Tucson, Arizona 85715

VITA-1

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704.0188

PuUBIC rEDOFTING TLTJeN TOr tMis (Cliection 2 nfCrmation s 251 Mateq to average ' "Our DEr “espurse 'NCiuding the 1ime *Or review A instrucliCns. s€377°'Ag fosting Qata slur.as
jathenng and marmtaining the data needed. and COMPIEtING ana réviewing the (Jl1eCTiICR 21 1nT2rmaton Send comments ragarding M burden estimate 27 any Sther aspest o°
collection of INtAr»ation. iNCIuGING SUGGEstions 1Or reduding this Durden 10 NVashington ~eadquarters Services, Directorate for intormation Operaticrs 1na Repors, 1215 _2=eryir
Davis Highway, Surte 1204, Arhingtaon, va 22202-4302. and tc tne Otfice of Management and 3udget Paperworx Reduction Project (3704-0188), wWasmingion. OC 20503

1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 1990 Master's Thesis
3. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MAPPING AN OBJECT-ORIENTED REQUIREMENTS
ANALYSIS TO A DESIGN ARCHITECTURE THAT
SUPPORTS DESIGN AND COMPONENT REUSE

6. AUTHOR(S)

Kelly L. Spicer, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Air Force Institute of Technology, WPAFB OH
45433-6583 AFIT/GCS/ENG/90D-13

9. SPONSORING - MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION . AVAILABILITY STATEMENT 12b. DISTRIBUTICN CODE

Approved for public release; distribution
unlimited

13. ABSTRACT (Maximum 200 words)

Design reuse has more potential for increasing the productivity
of software development and maintenance than do traditional
approaches to software reuse. Current software development
methods do not promote design reuse. Reusable designs should
apply within some application domain, have a consistent
structure, provide a method for instantiating the design, avoid
object nesting, and promote reuse of smaller components. A design
mapping method from an object-oriented requirements analysis to a
design adhering to the foregoing principles is presented. The
method involves two transformation steps and introduces four
representation tools for conducting the transformations. The
second step produces Ada specifications. Design templates are
used. The method is applied to two problems and one is
implemented.

14. SUBJECT TERMS 15. NUMBER OF P/LGES

Software Design Reuse, Software Reuse, Software _211
Engineering, Ada Programming Language, Object-Oriented$ PRICZ COOE

_Q.bet.ec.:__o.uem.ed_- Requirements Apalysis

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard “<-™ 298 (Rev -39

demecroag By -'eh 313 3978
23732

